Skip to main content
Log in

A data-driven spatiotemporal model predictive control strategy for nonlinear distributed parameter systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many distributed parameter systems (DPSs) have strongly nonlinear spatiotemporal dynamics, unknown parameters and complex boundary conditions, which make it difficult to obtain accurate prediction and control in actual practice. In this paper, a data-driven spatiotemporal model predictive control (MPC) strategy is proposed for nonlinear DPSs. It first develops a low-order nonlinear spatiotemporal model by using kernel principal component analysis to reconstruct the nonlinear spatial dynamics, so that the spatial nonlinearity is better reserved in contrast with the traditional data-driven DPS modeling methods. On this basis, a spatiotemporal MPC is proposed for nonlinear DPSs. In this control strategy, a new objective function is constructed with consideration of errors on not only time but also space, which overcomes the shortcoming of the traditional MPC due to the ignorance of nonlinear spatial dynamics. The stability and effectiveness of the proposed spatiotemporal control strategy are demonstrated by mathematical stability and comparative case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Butkowskii A. G.: Distributed Parameter Sysrems". American Elsevier, (1969).

  2. Christofides, P.D.: Nonlinear and robust control of PDE systems: methods and applications to transport-reaction processes. Burkhouse, Boston (2001)

    Book  Google Scholar 

  3. Zheng, D., Hoo, K.A.: Low-order model identification for implementable control solutions of distributed parameter systems. Comput. Chem. Eng. 26(7–8), 1049–1076 (2002)

    Article  Google Scholar 

  4. Li H.X., Qi C.K.: Spatio-temporal modeling of nonlinear distributed parameter systems - A time/space separation-based approach. Springer, (2011).

  5. Baker, J., Christofides, P.: "Finite-dimensional approximation and control of non-linear parabolic PDE systems. Int. J. Control 73, 439–456 (2000)

    Article  MathSciNet  Google Scholar 

  6. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Birkhauser, Boston (1989)

    Book  Google Scholar 

  7. Munubarthi, K.K., Gautam, D.K., Reddy, K.A., et al.: Distributed parameter system modeling approach for the characterization of a high flux hollow fiber forward osmosis (HFFO) membrane. Desalination. 496, 1–15 (2020)

    Article  Google Scholar 

  8. Armaou, A., Christofides, P.D.: Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chem. Eng. Sci. 57, 5083–5114 (2002)

    Article  Google Scholar 

  9. Curtain, R.F., Zwart, H.J.: An introduction to infinite-dimensional linear system theory. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  10. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, New York (1988)

    Book  Google Scholar 

  11. Mitchell, A.R., Griffiths, D.F.: The Finite Difference Method in Partial Differential Equations. Wiley, Hoboken, NJ, USA (1980)

    MATH  Google Scholar 

  12. Manevitz, L.M., Givoli, D.: Towards automating the finite element method: a test-bed for soft computing. Appl. Soft Comput. 3(1), 37–51 (2003)

    Article  Google Scholar 

  13. Christofides, P.D., Daoutidis, P.: Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. J. Math. Analy. Appl. 216(2), 398 (1997)

    Article  MathSciNet  Google Scholar 

  14. Temam, R.: Infinite-dimensional dynamical systems in Mechanics and Physics, 2nd edn. Springer-Verlag, New York (2001)

    Google Scholar 

  15. Jiang, Y., Hayashi, I., Wang, S.: Knowledge acquisition method based on singular value decomposition for human motion analysis,". IEEE Trans. Knowl Data Eng. (2014). https://doi.org/10.1109/tkde.2014.2316521

    Article  Google Scholar 

  16. Fernandes, G., Rodrigues, J.J.P.C., Proenca, M.L.: Autonomous profile-based anomaly detection system using principal component analysis and flow analysis. Appl. Soft Comput. 34, 513–525 (2015)

    Article  Google Scholar 

  17. Liu, Z., Li, H.X.: A spatiotemporal estimation method for temperature distribution in lithium-ion batteries. IEEE Trans. Industr. Inf. 10(4), 2300–2307 (2014)

    Article  Google Scholar 

  18. Klamka J.: Controllability and Minimum Energy Control”, Studies in Systems, Decision and Control, Springer, (2019).

  19. Respondek, J.: Numerical approach to the non-linear diofantic equations with applications to the controllability of infinite dimensional dynamical systems. Int. J. Control 78(13), 1017–1030 (2005)

    Article  MathSciNet  Google Scholar 

  20. Respondek, J.: Numerical analysis of controllability of diffusive–convective system with limited manipulating variables. Int. Commun. Heat Mass Transfer 34(8), 934–944 (2007)

    Article  Google Scholar 

  21. Maidi, A., Diaf, M., Coffiou, J.P.: Optimal linear PI fuzzy controller design of a heat exchanger. Chem. Eng. Process. 47(5), 938–945 (2008)

    Article  Google Scholar 

  22. Hanczyc, E.M., Palazoglu, A.: Sliding Mode Control of Nonlinear Distributed Parameter Chemical Processes. Ind. Eng. Chem. Res. 34, 551–566 (1995)

    Google Scholar 

  23. Wu, H.N., Li, H.X.: Adaptive neural control design for nonlinear distributed parameter systems with persistent bounded disturbances. IEEE Trans. Neural Networks 20, 1630–1644 (2009)

    Article  Google Scholar 

  24. García, M.R., Vilas, C., Santos, L.O., Alonso, A.A.: A robust multi-model predictive controller for distributed parameter systems. J. Process Control 22(1), 60–71 (2012)

    Article  Google Scholar 

  25. Hudon, N., Perrier, M., Guay, M., Dochain, D.: Adaptive extremum seeking control of a non-isothermal tubular reactor with unknown kinetics. Comput. Chem. Eng. 29, 839–849 (2005)

    Article  Google Scholar 

  26. Aggelogiannaki, E., Sarimveis, H.: Robust nonlinear H∞ control of hyperbolic distributed parameter systems. Control. Eng. Pract. 17(6), 723–732 (2009)

    Article  Google Scholar 

  27. Wang, Z.P., Wu, H.N., Li, H.X.: Fuzzy control under spatially local averaged measurements for nonlinear distributed parameter systems with time-varying delay. IEEE Trans. Cybernetics 51(3), 1359–1369 (2021)

    Article  Google Scholar 

  28. Zhang, X.X., Jiang, Y., Li, H.X.: SVR learning-based spatiotemporal fuzzy logic controller for nonlinear spatially distributed dynamic systems. IEEE Trans. Neural Networks and Learn. Syst. 24, 1635–1647 (2013)

    Article  Google Scholar 

  29. Clarke, D.W., Mohtadi, C., Tuffs, P.: Generalized predictive control part I. The basic algorithm. Automatica 23(2), 137–148 (1987)

    Article  Google Scholar 

  30. Dufour, P., Tour´eBlancLaurent, Y.D.P.: On nonlinear distributed parameter model predictive control strategy: on-line calculation time reduction and application to an experimental drying process. Comp. Chem. Eng. 27(11), 1533–1542 (2003)

    Article  Google Scholar 

  31. Dubljevic, S., El-Farra, N.H., Mhaskar, P., Christofides, P.D.: Predictive control of parabolic PDEs with state and control constraints. Int. J. Robust Nonlinear Control 16(16), 749–772 (2006)

    Article  MathSciNet  Google Scholar 

  32. Dubljevic, S., Christofides, P.D.: Predictive control of parabolic PDEs with boundary control actuation. Chem. Eng. Sci. 61(18), 6239–6248 (2006)

    Article  Google Scholar 

  33. Ni, D., Christofides, P.D.: Multivariable predictive control of thin film deposition using a stochastic PDE model. Ind. Eng. Chem. Res. 44(8), 2416–2427 (2005)

    Article  Google Scholar 

  34. Garc´ıVilasSantosAlonso, M.R.C.L.O.A.A.: A robust multi-model predictive controller for distributed parameter systems. J. Proc. Control. 22(1), 60–71 (2012)

    Article  Google Scholar 

  35. Antoniou A, Lu W. S.: Practical Optimization: Algorithms and Engineering Applications, Springer, (2007).

  36. Han, X., Kloeden, P.E.: Sigmoidal approximations of heaviside functions in neural lattice models. J. Diff. Equ. 268(9), 5283–5300 (2020)

    Article  MathSciNet  Google Scholar 

  37. DengLi, H.H.X.: A novel neural approximate inverse control for unknown nonlinear discrete dynamical systems”. IEEE Trans. Cybernetics (2005). https://doi.org/10.1109/TSMCB.2004.836472

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key R&D Program of China (2018AAA0101703), the National Natural Science Foundation of China (52075556), the Key R&D Program of Hunan Province (2021SK2016), the science and technology innovation Program of Hunan Province (2020GK4097), and Innovation Project for graduate student of Central South University (160171011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Lu, X. A data-driven spatiotemporal model predictive control strategy for nonlinear distributed parameter systems. Nonlinear Dyn 108, 1269–1281 (2022). https://doi.org/10.1007/s11071-022-07273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07273-1

Keywords

Navigation