Skip to main content

Advertisement

Log in

Design of a quad-stable piezoelectric energy harvester capable of programming the coordinates of equilibrium points

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, a novel quad-stable energy harvester (QEH) is developed, in which its coordinates of equilibrium points can be user-defined like programming. This programmable feature distinguishes the proposed QEH from all reported magnet-type or buckling-type vibration energy harvesters. It has the advantage that it is easy to develop a high-performance QEH by appropriately programming these coordinate points and customizing a personalized QEH for different vibration environments. The dynamic model is established by the Ritz method and the Lagrange equation. The analytical steady periodic response is obtained by the average method. When the excitation acceleration is 2 m/s2, the peak power is 575 μW at 8.5 Hz. Also, the influence of the coordinate arrangement of the equilibrium points on the energy harvesting performance is studied. A formula that can quickly determine the equilibrium point coordinates is given, and the QEH designed according to this formula has superior performance. At last, the performance of the designed QEH is compared with other reported vibration energy harvesters. It shows that the QEH has a high average output power (287 μW), high normalized power density (59.8 μW/cm3/g2), and wide operating frequency range (8.4 Hz) among these harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

These data are collected by the experiment. The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Zou, H.X., Zhao, L.C., Gao, Q.H., Zuo, L., Liu, F.R., Tan, T., Wei, K.X., Zhang, W.M.: Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Appl. Energy 255, 113871 (2019)

    Article  Google Scholar 

  2. Lemey, S., Agneessens, S., Torre, P.V., Baes, K., Vanfleteren, J., Rogier, H.: Wearable flexible lightweight modular RFID tag with integrated energy harvester. IEEE Trans. Microw. Theory Tech. 64, 2304–2314 (2016)

    Article  Google Scholar 

  3. Tan, T., Hu, X., Yan, Z., Zhang, W.: Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Energy 187, 115915 (2019)

    Article  Google Scholar 

  4. Latif, U., Uddin, E., Younis, M.Y., Aslam, J., Ali, Z., Sajid, M., Abdelkefi, A.: Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder. Energy 215, 119195 (2021)

    Article  Google Scholar 

  5. Hu, G., Tang, L., Liang, J., Lan, C., Das, R.: Acoustic-elastic metamaterials and phononic crystals for energy harvesting: a review. Smart Mater. Struct. 30, 085025 (2021)

    Article  Google Scholar 

  6. Zhang, C.L., Lai, Z.H., Zhang, G.Q., Yurchenko, D.: Energy harvesting from a dynamic vibro-impact dielectric elastomer generator subjected to rotational excitations. Nonlinear Dyn. 102, 1271–1284 (2020)

    Article  Google Scholar 

  7. Fang, S., Wang, S., Zhou, S., Yang, Z., Liao, W.H.: Analytical and experimental investigation of the centrifugal softening and stiffening effects in rotational energy harvesting. J. Sound Vib. 488, 115643 (2020)

    Article  Google Scholar 

  8. Fan, K., Hao, J., Wang, C., Zhang, C., Wang, W., Wang, F.: An eccentric mass-based rotational energy harvester for capturing ultralow-frequency mechanical energy. Energy Convers. Manag. 241, 114301 (2021)

    Article  Google Scholar 

  9. Zhao, C., Yang, Y., Upadrashta, D., Zhao, L.: Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester. Energy 214, 118885 (2021)

    Article  Google Scholar 

  10. Wei, C., Zhang, K., Hu, C., Wang, Y., Taghavifar, H., Jing, X.: A tunable nonlinear vibrational energy harvesting system with scissor-like structure. Mech. Syst. Signal Process. 125, 202–214 (2019)

    Article  Google Scholar 

  11. Cai, W., Harne, R.L.: Vibration energy harvesters with optimized geometry, design, and nonlinearity for robust direct current power delivery. Smart Mater. Struct. 28, 075040 (2019)

    Article  Google Scholar 

  12. Bonnin, M., Traversa, F.L., Bonani, F.: Leveraging circuit theory and nonlinear dynamics for the efficiency improvement of energy harvesting. Nonlinear Dyn. 104, 367–382 (2021)

    Article  Google Scholar 

  13. Lan, C., Liao, Y., Hu, G., Tang, L.: Equivalent impedance and power analysis of monostable piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 31, 1697–1715 (2020)

    Article  Google Scholar 

  14. Sun, Y., Wang, P., Lu, J., Xu, J., Wang, P., Xie, S., Li, Y., Dai, J., Wang, B., Gao, M.: Rail corrugation inspection by a self-contained triple-repellent electromagnetic energy harvesting system. Appl. Energy 286, 116512 (2021)

    Article  Google Scholar 

  15. Yang, Z., Tang, L., Tao, K., Aw, K.: A broadband electret-based vibrational energy harvester using soft magneto-sensitive elastomer with asymmetrical frequency response profile. Smart Mater. Struct. 28, 10LT02 (2019)

    Article  Google Scholar 

  16. Fu, Y., Ouyang, H., Benjamin Davis, R.: Nonlinear structural dynamics of a new sliding-mode triboelectric energy harvester with multistability. Nonlinear Dyn. 100, 1941–1962 (2020)

    Article  Google Scholar 

  17. Liu, H., Fu, H., Sun, L., Lee, C., Yeatman, E.M.: Hybrid energy harvesting technology: from materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 137, 110473 (2021)

    Article  Google Scholar 

  18. Huguet, T., Badel, A., Druet, O., Lallart, M.: Drastic bandwidth enhancement of bistable energy harvesters: study of subharmonic behaviors and their stability robustness. Appl. Energy 226, 607–617 (2018)

    Article  Google Scholar 

  19. Zou, D., Liu, G., Rao, Z., Tan, T., Zhang, W., Liao, W.H.: Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations. Appl. Energy 302, 117585 (2021)

    Article  Google Scholar 

  20. Zhang, Y., Ding, C., Wang, J., Cao, J.: High-energy orbit sliding mode control for nonlinear energy harvesting. Nonlinear Dyn. 105, 191–211 (2021)

    Article  Google Scholar 

  21. Zou, D., Liu, G., Rao, Z., Cao, J., Liao, W.-H.: Design of a high-performance piecewise bi-stable piezoelectric energy harvester. Energy 241, 122514 (2022)

    Article  Google Scholar 

  22. Xie, Z., Wang, T., Kwuimy, C.A.K., Shao, Y., Huang, W.: Design, analysis and experimental study of a T-shaped piezoelectric energy harvester with internal resonance. Smart Mater. Struct. 28, 085027 (2019)

    Article  Google Scholar 

  23. Derakhshani, M., Berfield, T.A., Murphy, K.D.: A component coupling approach to dynamic analysis of a buckled, bistable vibration energy harvester structure. Nonlinear Dyn. 96, 1429–1446 (2019)

    Article  Google Scholar 

  24. Fang, S., Wang, S., Miao, G., Zhou, S., Yang, Z., Mei, X., Liao, W.H.: Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect. Nonlinear Dyn. 101, 123–152 (2020)

    Article  Google Scholar 

  25. Wang, Y., Jing, X.: Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019)

    Article  Google Scholar 

  26. Chen, K., Gao, Q., Fang, S., Zou, D., Yang, Z., Liao, W.-H.: An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth. Appl. Energy 298, 117274 (2021)

    Article  Google Scholar 

  27. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94, 254102 (2009)

    Article  Google Scholar 

  28. Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  29. Zhou, Z., Qin, W., Zhu, P.: Harvesting performance of quad-stable piezoelectric energy harvester: modeling and experiment. Mech. Syst. Signal Process. 110, 260–272 (2018)

    Article  Google Scholar 

  30. Zou, D., Liu, G., Rao, Z., Tan, T., Zhang, W., Liao, W.H.: Design of vibration energy harvesters with customized nonlinear forces. Mech. Syst. Signal Process. 153, 107526 (2021)

    Article  Google Scholar 

  31. Qian, F., Hajj, M.R., Zuo, L.: Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Convers Manag 222, 113174 (2020)

    Article  Google Scholar 

  32. Tao, J., He, X., Yi, S., Deng, Y.: Broadband energy harvesting by using bistable FG-CNTRC plate with integrated piezoelectric layers. Smart Mater. Struct. 28, 095021 (2019)

    Article  Google Scholar 

  33. Zhang, C., Harne, R.L., Li, B., Wang, K.W.: Statistical quantification of DC power generated by bistable piezoelectric energy harvesters when driven by random excitations. J. Sound Vib. 442, 770–786 (2019)

    Article  Google Scholar 

  34. Harne, R.L., Thota, M., Wang, K.W.: Bistable energy harvesting enhancement with an auxiliary linear oscillator. Smart Mater. Struct. 22, 125028 (2013)

    Article  Google Scholar 

  35. Fu, H., Yeatman, E.M.: Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation. Mech. Syst. Signal Process. 125, 229–244 (2019)

    Article  Google Scholar 

  36. Zhou, Z., Qin, W., Du, W., Zhu, P., Liu, Q.: Improving energy harvesting from random excitation by nonlinear flexible bi-stable energy harvester with a variable potential energy function. Mech. Syst. Signal Process. 115, 162–172 (2019)

    Article  Google Scholar 

  37. Huguet, T., Lallart, M., Badel, A.: Bistable vibration energy harvester and SECE circuit: exploring their mutual influence. Nonlinear Dyn. 97, 485–501 (2019)

    Article  Google Scholar 

  38. Mei, X., Zhou, S., Yang, Z., Kaizuka, T., Nakano, K.: A tri-stable energy harvester in rotational motion: modeling, theoretical analyses and experiments. J. Sound Vib. 469, 115142 (2020)

    Article  Google Scholar 

  39. Mei, X., Zhou, S., Yang, Z., Kaizuka, T., Nakano, K.: Enhancing energy harvesting in low-frequency rotational motion by a quad-stable energy harvester with time-varying potential wells. Mech. Syst. Signal Process. 148, 107167 (2021)

    Article  Google Scholar 

  40. Li, H., Ding, H., Jing, X., Qin, W., Chen, L.: Improving the performance of a tri-stable energy harvester with a staircase-shaped potential well. Mech. Syst. Signal Process. 159, 107805 (2021)

    Article  Google Scholar 

  41. Wang, G., Liao, W.H., Zhao, Z., Tan, J., Cui, S., Wu, H., Wang, W.: Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dyn. 97, 2371–2397 (2019)

    Article  Google Scholar 

  42. Lallart, M., Zhou, S., Yang, Z., Yan, L., Li, K., Chen, Y.: Coupling mechanical and electrical nonlinearities: the effect of synchronized discharging on tristable energy harvesters. Appl. Energy 266, 114516 (2020)

    Article  Google Scholar 

  43. Yang, T., Cao, Q.: Dynamics and performance evaluation of a novel tristable hybrid energy harvester for ultra-low level vibration resources. Int. J. Mech. Sci. 156, 123–136 (2019)

    Article  Google Scholar 

  44. Wang, C., Zhang, Q., Wang, W., Feng, J.: A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech. Syst. Signal Process. 112, 305–318 (2018)

    Article  Google Scholar 

  45. Gao, M., Wang, Y., Wang, Y., Yao, Y., Wang, P., Sun, Y., Xiao, J.: Modeling and experimental verification of a fractional damping quad-stable energy harvesting system for use in wireless sensor networks. Energy 190, 116301 (2020)

    Article  Google Scholar 

  46. Dekemele, K., Van Torre, P., Loccufier, M.: Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. J. Sound Vib. 473, 115243 (2020)

    Article  Google Scholar 

  47. Zou, D., Liu, G., Rao, Z., Tan, T., Zhang, W., Liao, W.H.: A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mech. Syst. Signal Process. 147, 107101 (2021)

    Article  Google Scholar 

  48. Qian, F., Zhou, S., Zuo, L.: Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. 80, 104984 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  50. Liao, Y., Sodano, H.A.: Model of a single mode energy harvester and properties for optimal power generation. Smart Mater. Struct. 17, 065026 (2008)

    Article  Google Scholar 

  51. Shu, Y.C., Lien, I.C.: Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromech. Microeng. 16, 2429–2438 (2006)

    Article  Google Scholar 

  52. Roundy, S.: On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16, 809–823 (2005)

    Article  Google Scholar 

  53. Xie, Z., Huang, B., Fan, K., Zhou, S., Huang, W.: A magnetically coupled nonlinear T-shaped piezoelectric energy harvester with internal resonance. Smart Mater. Struct. 28, 11LT01 (2019)

    Article  Google Scholar 

  54. Hu, G., Liang, J., Lan, C., Tang, L.: A twist piezoelectric beam for multi-directional energy harvesting. Smart Mater. Struct. 29, 11LT01 (2020)

    Article  Google Scholar 

  55. Li, J., He, X., Yang, X., Liu, Y.: A consistent geometrically nonlinear model of cantilevered piezoelectric vibration energy harvesters. J. Sound Vib. 486, 115614 (2020)

    Article  Google Scholar 

  56. Yi, Z., Hu, Y., Ji, B., Liu, J., Yang, B.: Broad bandwidth piezoelectric energy harvester by a flexible buckled bridge. Appl. Phys. Lett. 113, 183901 (2018)

    Article  Google Scholar 

  57. Tang, Q.C., Yang, Y.L., Li, X.: Bi-stable frequency up-conversion piezoelectric energy harvester driven by non-contact magnetic repulsion. Smart Mater. Struct. 20, 125011 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation and Technology Commission (Project No. ITS/367/18, under Postdoctoral Hub PiH/231/19), Research Grants Council (Project No. CUHK14205917) of Hong Kong Special Administrative Region, China, and the National Natural Science Foundation of China (Project No.11802175).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

DZ performed methodology and writing—original draft preparation. KC was involved in investigation and formal analysis. DZ and KC were involved in validation. ZR, JC and W-HL were involved in conceptualization. ZR and JC were involved in writing—reviewing and editing. W-HL was involved in supervision and project administration.

Corresponding author

Correspondence to Wei-Hsin Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The code is written according to the proposed model.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The parameters in Eq. (1) can be expressed as:

$$ \begin{aligned} M & = \rho _{s} A_{s} \int_{0}^{{L_{s} }} {\varphi _{1}^{2} (x){\text{d}}x} + \rho _{p} A_{p} \int_{0}^{{L_{p} }} {\varphi _{1}^{2} (x){\text{d}}x} + M_{t} \\ m & = \rho _{s} A_{s} \int_{0}^{{L_{s} }} {\varphi _{1} (x){\text{d}}x} + \rho _{p} A_{p} \int_{0}^{{L_{p} }} {\varphi _{1} (x){\text{d}}x} + M_{t} \\ K_{1} & = Y_{s} I_{s} \int_{0}^{{L_{s} }} {\varphi _{1}^{{\prime \prime 2}} (x){\text{d}}x} + Y_{p}^{E} I_{p} \int_{0}^{{L_{p} }} {\varphi _{1}^{{\prime \prime 2}} (x){\text{d}}x} \\ K_{2} & = 2Y_{s} I_{s} \int_{0}^{{L_{s} }} {\varphi _{1}^{{\prime 2}} (x)\varphi _{1}^{{\prime \prime 2}} (x){\text{d}}x} + 2Y_{p}^{E} I_{p} \int_{0}^{{L_{p} }} {\varphi _{1}^{{\prime 2}} (x)\varphi _{1}^{{\prime \prime 2}} (x){\text{d}}x} \\ \vartheta & = \frac{{e_{{31}} b\left( {h_{s} + h_{p} } \right)\varphi _{1}^{\prime } (L_{p} )}}{2},C_{p} = \frac{{\varepsilon _{{33}}^{S} b_{p} L_{p} }}{{h_{p} }} \\ \end{aligned} $$
(29)

where \(\varphi_{1} (x)\) is the undamped eigenfunction of the first vibration mode normalized with \(\varphi_{1} (L_{s} ) = 1\);\(\rho_{s}\) and \(A_{s}\) are the density and area of the substructure layer, respectively; \(\rho_{p}\) and \(A_{p}\) are the density and area of the piezoelectric layer, respectively; \(L_{s}\) and \(L_{p}\) are the lengths of the substructure layer and the piezoelectric layer; \(M_{t}\) is the mass of the proof mass; \(Y_{s}\) is the Young’s modulus of the substructure layer; \(Y_{p}^{E}\) is the Young’s modulus of the piezoelectric layer, and the superscript \(E\) indicates a parameter at constant (typically short-circuit) electrical field; \(I_{s}\) and \(I_{p}\) are the area moments of inertia of the substructure layer and the piezoelectric layer, respectively; \(h_{s}\) and \(h_{p}\) are the thicknesses of the substructure layer and the piezoelectric layer, respectively; \(b_{p}\) is the width of the piezoelectric layer. \(\varepsilon_{33}^{S}\) is the permittivity of the piezoelectric element and the superscripts \(S\) indicates a parameter at constant strain; \(e_{31}\) is the piezoelectric constant.

Appendix B

Substituting Eqs. (14) and (15) into the second equation of Eq. (13), one obtains:

$$ - \alpha \overline{\omega }A_{2} \sin (\psi_{2} ) + A_{2} \cos (\psi_{2} ) = - \alpha \overline{\omega }A_{1} \sin (\psi_{1} ) $$
(30)

Differentiate Eq. (30) and ignore all the derivative terms (only considering the steady-state response), we can get:

$$ - \alpha \overline{\omega }^{2} A_{2} \cos (\psi_{2} ) - \overline{\omega }A_{2} \sin (\psi_{2} ) = - \alpha \overline{\omega }^{2} A_{1} \cos (\psi_{1} ) $$
(31)

From Eqs. (30) and (31), one obtains:

$$ \Gamma \overline{V} = k_{{{\text{eq}}}} A_{1} \cos (\psi_{1} ) - c_{{{\text{eq}}}} \overline{\omega }A_{1} \sin (\psi_{1} ) $$
(32)

where \(k_{eq}\) and \(c_{eq}\) can be expressed as:

$$ k_{eq} = \frac{{\Gamma \alpha^{2} \overline{\omega }^{2} }}{{1 + \alpha^{2} \overline{\omega }^{2} }},c_{eq} = \frac{\Gamma \alpha }{{1 + \alpha^{2} \overline{\omega }^{2} }} $$
(33)

From Eq. (32), it is known that the amplitudes of the voltage can be expressed as:

$$ \left| {\overline{V}} \right| = \frac{{\alpha \overline{\omega }A_{1} }}{{\sqrt {1 + \alpha^{2} \overline{\omega }^{2} } }} $$
(34)

Substituting Eq. (14) into the nonlinear force term in Eq. (13) and expanding it, many harmonic terms can be obtained. If only the first-order approximate solution is needed, only the constant term and the first harmonic term need to be considered, and the following results can be obtained:

$$ - \overline{q}^{1} + \overline{q}^{3} + \gamma_{1} \overline{q}^{5} + \gamma_{2} \overline{q}^{7} \approx H_{1} \cos (\psi_{1} ) + H_{2} $$
(35)

where \(H_{1}\) and \(H_{2}\) are defined as follows:

$$ \begin{aligned} H_{1} & = \frac{{\left( {48A_{1}^{2} + 40\gamma_{1} A_{1}^{4} + 35\gamma_{2} A_{1}^{6} - 64} \right)A_{1} }}{64} + \frac{{\left( {105\gamma_{2} A_{1}^{5} + 60\gamma_{1} A_{1}^{3} + 24A_{1} } \right)A_{0}^{2} }}{8} \\ & \quad + \frac{{\left( {210\gamma_{2} A_{1}^{3} + 40\gamma_{1} A_{1} } \right)A_{0}^{4} + 56\gamma_{2} A_{0}^{6} A_{1} }}{8} \\ \end{aligned} $$
(36)
$$ \begin{aligned} H_{2} & = \gamma_{2} A_{0}^{7} + \frac{{21\gamma_{2} A_{1}^{2} + 2\gamma_{1} }}{2}A_{0}^{5} + \frac{{105\gamma_{2} A_{1}^{4} + 40\gamma_{1} A_{1}^{2} + 8}}{8}A_{0}^{3} \\ & \quad + \frac{{35\gamma_{2} A_{1}^{6} + 30\gamma_{1} A_{1}^{4} + 24A_{1}^{2} - 16}}{16}A_{0} \\ \end{aligned} $$
(37)

Substituting Eqs. (32), (35) and (16) into the first equation of Eq. (13), solving the algebra equation to \(\dot{A}_{1}\) and \(\dot{\theta }_{1}\), one obtains:

$$ H_{2} = 0 $$
(38)
$$ \begin{aligned} \dot{A}_{1} & = - \frac{{\sin (\psi_{1} )\left( {((\overline{\omega }^{2} - k_{eq} )A_{1} - H_{1} )\cos (\psi_{1} ) + (2\xi + c_{eq} )\overline{\omega }A_{1} \sin (\psi_{1} ) + F\cos (\overline{\omega }\overline{t})} \right)}}{{\overline{\omega }}} \\ \dot{\theta }_{1} & = - \frac{{\cos (\psi_{1} )\left( {((\overline{\omega }^{2} - k_{eq} )A_{1} - H_{1} )\cos (\psi_{1} ) + (2\xi + c_{eq} )\overline{\omega }A_{1} \sin (\psi_{1} ) + F\cos (\overline{\omega }\overline{t})} \right)}}{{A_{1} \overline{\omega }}} \\ \end{aligned} $$
(39)

From the principle of the averaging method, it is assumed that \(A_{1}\) and \(\theta_{1}\) vary much more slowly with \(\overline{t}\) than \(\psi_{1}\). This enables us to average out the variation \(\psi_{1}\) in Eq. (39). The averaging equation of amplitude \(A_{1}\) and \(\theta_{1}\) is rewritten as:

$$ \begin{aligned} \dot{A}_{1} & = - \frac{{\int_{0}^{2\pi } {\left( {((\overline{\omega }^{2} - k_{eq} )A_{1} - H_{1} )\cos (\psi_{1} ) + (2\xi + c_{eq} )\overline{\omega }A_{1} \sin (\psi_{1} ) + F\cos (\overline{\omega }\overline{t})} \right)\sin (\psi_{1} ){\text{d}}\psi_{1} } }}{{2\pi \overline{\omega }}} \\ \dot{\theta }_{1} & = - \frac{{\int_{0}^{2\pi } {\left( {((\overline{\omega }^{2} - k_{eq} )A_{1} - H_{1} )\cos (\psi_{1} ) + (2\xi + c_{eq} )\overline{\omega }A_{1} \sin (\psi_{1} ) + F\cos (\overline{\omega }\overline{t})} \right)\cos (\psi_{1} ){\text{d}}\psi_{1} } }}{{2\pi A_{1} \overline{\omega }}} \\ \end{aligned} $$
(40)

From Eq. (40), one obtains:

$$ \begin{aligned} \frac{{{\text{d}}A_{1} }}{{{\text{d}}t}} & = - \frac{{F\sin (\theta_{1} ) + (2\xi + c_{eq} )\overline{\omega }A_{1} }}{{2\overline{\omega }}} \\ A_{1} \frac{{{\text{d}}\theta_{1} }}{{{\text{d}}t}} & = - \frac{{F\cos (\theta_{1} ) + (\overline{\omega }^{2} - k_{eq} )A_{1} - H_{1} }}{{2\overline{\omega }}} \\ \end{aligned} $$
(41)

Steady periodic motions occur when \(\dot{A}_{1} = 0\) and \(\dot{\theta }_{1} = 0\). Hence, the amplitude–frequency response relationship is derived by the following formula:

$$ \left( {k_{eq} + \frac{{H_{1} }}{{A_{1} }} - \overline{\omega }^{2} } \right)^{2} + \left( {2\xi \overline{\omega } + c_{eq} \overline{\omega }} \right)^{2} = \frac{{F^{2} }}{{A_{1}^{2} }} $$
(42)

Appendix C

The stability of the steady-state motion is determined by investigating the nature of the singular points of Eq. (41). To accomplish this, we let:

$$ A_{1} = A_{1}^{*} + \Delta A_{1} ,\begin{array}{*{20}c} {} \\ \end{array} \theta_{1} = \theta_{1}^{*} + \Delta \theta_{1} $$
(43)

Substituting Eq. (43) into Eq. (41), expanding for small \(\Delta A_{1}\) and \(\Delta \theta_{1}\), and keeping linear terms in \(\Delta A_{1}\) and \(\Delta \theta_{1}\), one obtains:

$$ \begin{aligned} \frac{{{\text{d}}\Delta A_{1} }}{{{\text{d}}t}} & = - \frac{{2\xi + c_{eq} }}{2}\Delta A_{1} + \frac{{A_{1} \left( {\omega^{2} - k_{eq} } \right) - H_{1} }}{2\omega }\Delta \theta_{1} \\ \frac{{{\text{d}}\Delta \theta_{1} }}{{{\text{d}}t}} & = - \frac{{\omega^{2} - k_{eq} - \frac{{\partial H_{1} }}{{\partial A_{1} }}}}{{2A_{1} \omega }}\Delta A_{1} - \frac{{2\xi + c_{eq} }}{2}\Delta \theta_{1} \\ \end{aligned} $$
(44)

Thus, the stability of the steady-state motions depends on the eigenvalues of the coefficient matrix on the right-hand side of Eq. (44). The following eigenvalue equation can be obtained:

$$ \left| {\begin{array}{*{20}c} { - \frac{{2\xi + c_{eq} }}{2} - \lambda } & {\frac{{A_{1} \left( {\omega^{2} - k_{eq} } \right) - H_{1} }}{2\omega }} \\ { - \frac{{\omega^{2} - k_{eq} - \frac{{\partial H_{1} }}{{\partial A_{1} }}}}{{2A_{1} \omega }}} & { - \frac{{2\xi + c_{eq} }}{2} - \lambda } \\ \end{array} } \right| = 0 $$
(45)

Expanding this determinant, one yields:

$$ \lambda^{2} + \left( {2\xi + c_{eq} } \right)\lambda + \left( {\frac{{2\xi + c_{eq} }}{2}} \right)^{2} + \frac{{\left( {A_{1} \omega^{2} - A_{1} k_{eq} - H_{1} } \right)\left( {\omega^{2} - k_{eq} - \frac{{\partial H_{1} }}{{\partial A_{1} }}} \right)}}{{4A_{1} \omega^{2} }} = 0 $$
(46)

Hence the steady-state motions are stable when

$$ \left( {\frac{{2\xi + c_{eq} }}{2}} \right)^{2} + \frac{{\left( {A_{1} \omega^{2} - A_{1} k_{eq} - H_{1} } \right)\left( {\omega^{2} - k_{eq} - \frac{{\partial H_{1} }}{{\partial A_{1} }}} \right)}}{{4A_{1} \omega^{2} }} > 0 $$
(47)

otherwise, they are unstable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, D., Chen, K., Rao, Z. et al. Design of a quad-stable piezoelectric energy harvester capable of programming the coordinates of equilibrium points. Nonlinear Dyn 108, 857–871 (2022). https://doi.org/10.1007/s11071-022-07266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07266-0

Keywords

Navigation