Skip to main content

Advertisement

Log in

Transitions in a noisy birhythmic vibro-impact oscillator with improved memory damping regime

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the critical transition problem for a stochastically forced birhythmic vibro-impact (BVI) model with improved memory damping regime (IMDR) effect. This paper then reports a detailed probabilistic description on the random distribution of the oscillator response. Analytical criteria for critical transitions are obtained successively relying on the amplitude probability, the most probable amplitude (MPA), the joint probability, its cross-sectional view, and the contour projection, which can complement each other. Besides, numerical simulations are carried out to check the theoretical evaluation results. Detect the control parameter source inducing the transition between monorhythmicity and birhythmicity, also indicating the tipping interval of stochastic P-bifurcation and the critical evolution of the half-shaped stochastic attractor mode determined by the vibro-impact constraint, which can also be visually displayed by the intermittent behavior of time history responses. The alternation of feedback gains design of IMDR can subvert the utility direction of transitions caused by some control parameters. Shannon entropy measure is added to display a quantitative indication of the reference interval for the parameters triggering bifurcations, so as to lock effectively in the rhythm mode required by engineering application issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon request.

References

  1. Ramos, J., Kim, S.: Dynamic locomotion synchronization of bipedal robot and human operator via bilateral feedback teleoperation. Sci. Robotics 4(35), eaav4282 (2019)

    Article  Google Scholar 

  2. Zhang, C.L., Lai, Z.H., Li, M.Q., D,: Yurchenko, Wind energy harvesting from a conventional turbine structure with an embedded vibro-impact dielectric elastomer generator. J. Sound Vib. 487, 115616 (2020)

    Article  Google Scholar 

  3. Chen, H., Kurt, M., Lee, Y.S., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental system identification of the dynamics of a vibro-impact beam with a view towards structural health monitoring and damage detection. Mech. Syst. Signal Process. 46(1), 91–113 (2014)

    Article  Google Scholar 

  4. Dimentberg, M.F., Iourtchenko, D.V.: Random Vibrations with Impacts: A Review. Nonlinear Dyn. 36(2–4), 229–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Shi, J.Y., Bamer, F., Markert, B.: A structural pounding formulation using systematic modal truncation. Shock Vib. 2018, 1–15 (2018)

    Google Scholar 

  6. Cai, W., Zhu, L., Yu, T.X., Li, Y.G.: Numerical simulations for plates under ice impact based on a concrete constitutive ice model. Int. J. Impact Eng. 143, 103594 (2020)

    Article  Google Scholar 

  7. Kozlov, V.V., Kozlov, V.V., Treshchev, D.V., Treshchëv, D.V.: Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts: A Genetic Introduction to the Dynamics of Systems with Impacts. American Mathematical Soc., Providence, Rhode Island (1991)

    Book  MATH  Google Scholar 

  8. Babitsky, V.I.: Theory of vibro-impact systems and applications. Springer Science & Business Media, Germany (2013)

    MATH  Google Scholar 

  9. Huang, Z.L., Liu, Z.H., Zhu, W.Q.: Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations. J. Sound Vib. 275(1–2), 223–240 (2004)

    Article  Google Scholar 

  10. Wu, Y., Zhu, W.Q.: Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises. Phys. Lett. A 372(5), 623–630 (2008)

    Article  MATH  Google Scholar 

  11. Xu, W., Feng, J.Q., Rong, H.W.: Melnikov’s method for a general nonlinear vibro-impact oscillator. Nonlinear Anal. Theory Methods Appl. 71(1–2), 418–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu, M., Wang, Y., Jin, X.L., Huang, Z.L., Yu, T.X.: Random response of vibro-impact systems with inelastic contact. Int. J. Non-Linear Mech. 52, 26–31 (2013)

    Article  Google Scholar 

  13. Zhu, H.T.: Probabilistic solution of vibro-impact stochastic Duffing systems with a unilateral non-zero offset barrier. Physica A 410, 335–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar, P., Narayanan, S., Gupta, S.: Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers. Int. J. Mech. Sci. 127, 103–117 (2017)

    Article  Google Scholar 

  15. Ren, Z.C., Xu, W., Wang, D.L.: Dynamic and first passage analysis of ship roll motion with inelastic impacts via path integration method. Nonlinear Dyn. 97(1), 391–402 (2019)

    Article  Google Scholar 

  16. Wang, D.L., Xu, W., Gu, X.D.: Stationary response of stochastic viscoelastic system with the right unilateral nonzero offset barrier impacts. Chinese Phys. B 28(1), 010203 (2019)

    Article  Google Scholar 

  17. Qian, J.M., Chen, L.C.: Random vibration of SDOF vibro-impact oscillators with restitution factor related to velocity under wide-band noise excitations. Mech. Syst. Signal Proc. 147, 107082 (2021)

    Article  Google Scholar 

  18. Wang, L., Peng, J.H., Wang, B.C., Xu, W.: The response of stochastic vibro-impact system calculated by a new path integration algorithm. Nonlinear Dyn. 104(1), 289–296 (2021)

    Article  Google Scholar 

  19. Wang, D.L., Xu, W., Ren, Z.C., Pei, H.Q.: Maximal lyapunov exponents and steady-state moments of a VI system based upon TDFC and VED. Int. J. Bifurcation Chaos 29(11), 1950155 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Decroly, O., Goldbeter, A.: Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. 79(22), 6917–6921 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kar, S., Ray, D.S.: Large fluctuations and nonlinear dynamics of birhythmicity. EPL (Europhy. Lett.) 67(1), 137 (2004)

    Article  Google Scholar 

  22. Biswas, D., Banerjee, T., Kurths, J.: Control of birhythmicity: A self-feedback approach. Chaos: An Interdiscip. J. Nonlinear Sci. 27(6), 063110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghosh, P., Sen, S., Riaz, S.S., Ray, D.S.: Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Phys. Rev. E 83(3), 036205 (2011)

    Article  MathSciNet  Google Scholar 

  24. Bashkirtseva, I., Ryashko, L.: Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect. Chaos: An Interdiscip. J. Nonlinear Sci. 21(4), 047514 (2011)

    Article  MATH  Google Scholar 

  25. Kwuimy, C.A.K., Nataraj, C.: Recurrence and joint recurrence analysis of multiple attractors energy harvesting system Structural nonlinear dynamics and diagnosis, pp. 97–123. Springer, Cham (2015)

    Google Scholar 

  26. Yamapi, R., Filatrella, G.: Noise effects on a birhythmic Josephson junction coupled to a resonator. Phys. Rev. E 89(5), 052905 (2014)

    Article  Google Scholar 

  27. Guo, Q., Sun, Z.K., Xu, W.: Bifurcations in a fractional birhythmic biological system with time delay. Commun. Nonlinear Sci. Numer. Simul. 72, 318–328 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, Y.L., Ning, L.J.: Bifurcation Analysis of a Self-Sustained Birhythmic Oscillator Under Two Delays and Colored Noises. Int. J. Bifurcation Chaos 30(01), 2050013 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. de Espíndola, J.J., Bavastri, C.A., Lopes, E.M.O.: On the passive control of vibrations with viscoelastic dynamic absorbers of ordinary and pendulum types. J. Franklin Inst. 347(1), 102–115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, R., Shang, J.Z., Li, X., Luo, Z.R., Wu, W.: Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling. Sci. Rep. 8(1), 1–13 (2018)

    Google Scholar 

  31. Tuan, L.A., Lee, S.-G., Nho, L.C., Cuong, H.M.: Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable. Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng. 229(7), 662–674 (2015)

    Google Scholar 

  32. Charrier, E.E., Pogoda, K., Wells, R.G., Janmey, P.A.: Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9(1), 1–13 (2018)

    Article  Google Scholar 

  33. Christensen, R.: Theory of viscoelasticity: an introduction. Elsevier, Amsterdam (2012)

    Google Scholar 

  34. Drozdov, A.D.: Viscoelastic structures: mechanics of growth and aging. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  35. Zhu, W.Q., Cai, G.Q.: Random vibration of viscoelastic system under broad-band excitations. Int. J. Non-Linear Mech. 46(5), 720–726 (2011)

    Article  Google Scholar 

  36. Karimi, M.M., Tabatabaee, N., Jahangiri, B., Darabi, M.K.: Constitutive modeling of hardening-relaxation response of asphalt concrete in cyclic compressive loading. Constr. Build. Mater. 137, 169–184 (2017)

    Article  Google Scholar 

  37. Narimissa, E., Wagner, M.H.: Modeling nonlinear rheology of unentangled polymer melts based on a single integral constitutive equation. J. Rheol. 64(1), 129–140 (2020)

    Article  Google Scholar 

  38. Arnold, L.: Random dynamical systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  39. Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Phil. Trans. Royal Soc. A: Math., Phys. Eng. Sci. 370(1962), 1166–1184 (2012)

    Article  Google Scholar 

  40. Ashwin, P., Perryman, C., Wieczorek, S.: Parameter shifts for nonautonomous systems in low dimension: bifurcation-and rate-induced tipping. Nonlinearity 30(6), 2185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaiser, F., Eichwald, C.: Bifurcation structure of a driven, multi-limit-cycle van der pol oscillator (i): The superharmonic resonance structure. Int. J. Bifurcation Chaos 1(02), 485–491 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Eichwald, C., Kaiser, F.: Bifurcation structure of a driven multi-limit-cycle van der Pol oscillator (ii): Symmetry-breaking crisis and intermittency. Int. J. Bifurcation Chaos 1(03), 711–715 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kadji, H.G.E., Orou, J.B.C., Yamapi, R., Woafo, P.: Nonlinear dynamics and strange attractors in the biological system. Chaos, Solitons Fractals 32(2), 862–882 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhuravlev, V.F.: A method for analyzing vibration-impact systems by means of special functions. Mech. Solids 11(2), 23–27 (1976)

    MathSciNet  Google Scholar 

  45. Zhu, W.Q.: Random vibration [M]. Science Press, Beijing (1992).. (in Chinese)

    Google Scholar 

  46. Roberts, J., Spanos, P.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21, 111–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, Z.H., Zhu, W.Q.: Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control. J. Sound Vib. 299(1–2), 178–195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Gaudreault, M., Drolet, F., Viñals, J.: Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback. Phys. Rev. E 82(5), 051124 (2010)

    Article  Google Scholar 

  49. Phillis, Y.A.: Entropy stability of continuous dynamic systems. Int. J. Control 35(2), 323–340 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kumar, P., Narayanan, S., Gupta, S.: Investigations on the bifurcation of a noisy Duffing–van der Pol oscillator. Probab. Eng. Mech. 45, 70–86 (2016)

    Article  Google Scholar 

  51. Venkatramani, J., Sarkar, S., Gupta, S.: Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations. Nonlinear Dyn. 92(3), 1225–1241 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12002250), China Postdoctoral Science Foundation (2020M683429), and the Natural Science Foundation of Shaanxi Province (2021JM-349).

Funding

National Natural Science Foundation of China, 12002250, Deli Wang, Postdoctoral Research Foundation of China, 2020M683429, Deli Wang, Natural Science Foundation of Shaanxi Province, 2021JM-349.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deli Wang or Haiqing Pei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Pei, H., Xu, W. et al. Transitions in a noisy birhythmic vibro-impact oscillator with improved memory damping regime. Nonlinear Dyn 108, 1045–1070 (2022). https://doi.org/10.1007/s11071-022-07261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07261-5

Keywords

Navigation