Skip to main content
Log in

General planar motion modeling and control of a smart rigid-flexible satellite considering large deflections

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the motion of a smart rigid-flexible satellite considering large deflections for its flexible appendages in general planar motion is modeled. Also, the satellite can experience translational and rotational motions. In addition, its flexible appendages can vibrate arbitrarily in the motion plane. Two control forces perpendicular to each other and one control torque are responsible for controlling the motion of the satellite on the desired trajectories. Also, piezoelectric actuators and sensors suppress vibrations and estimate the transverse displacement of the satellite's flexible appendages, respectively. The coupled ordinary-partial differential equations of motion, equations of the sensors and boundary conditions of the system are obtained using the extended Hamilton's principle. Then, these equations are discretized using the Galerkin method. The discretized equations of motion are a set of coupled nonlinear ordinary differential equations due to the consideration of the large rotation angle of the satellite and large deflections for its flexible appendages. An adaptive super-twisting global nonlinear sliding mode controller is designed to satisfy the control objectives including position and attitude control, as well as suppressing vibrations of the flexible appendages in the presence of uncertainties and external disturbances. Eventually, numerical simulations are presented to validate the proposed dynamic model of a smart flexible satellite and illustrate the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability Statement

The sources of all the data used in this study including properties, parameter values and required data for validation are included within the article.

Abbreviations

\(A\) :

Cross-sectional area (m2)

AGNSMC:

Adaptive global nonlinear sliding mode controller

ASTGNSMC:

Adaptive super-twisting global nonlinear sliding mode controller

\({\mathbf{C}}({\mathbf{q}},{\dot{\mathbf{q}}})\) :

Nonlinear vector including the effects of centrifugal and Coriolis accelerations and flexible appendages equations

\({\mathbf{C}}_{0} ({\mathbf{q}},{\dot{\mathbf{q}}})\), \(\Delta {\mathbf{C}}({\mathbf{q}},{\dot{\mathbf{q}}})\) :

Known and uncertain parts of \({\mathbf{C}}({\mathbf{q}},{\dot{\mathbf{q}}})\)

CRB:

Central rigid body

\({\mathbf{D}}\) :

Lumped uncertainties and disturbances vector

\(E\) :

Young's modulus of the flexible appendages (kg/m/s2)

\(E_{p}\) :

Young's modulus of the piezoelectric patches (kg/m/s2)

\(E_{z}\) :

Electric field of each piezoelectric patch

\(e_{31}\) :

Equivalent piezoelectric coefficient

\({\mathbf{e}}\), \({\dot{\mathbf{e}}}\), \({\dot{\mathbf{e}}}\) :

Position, velocity and acceleration tracking errors

\(f_{xb}\) , \(f_{yb}\) :

Control forces in xb and yb directions (N)

\({\mathbf{G}}\) :

A constant row vector in the sliding surface formula

\(I\) :

Second cross-sectional area moment of inertia (m4)

\(J\) :

Inertia of CRB (kg·m2)

La:

Left flexible appendage

LAE:

Element of the left flexible appendage

\(l_{a}\) :

Length of the flexible appendages (m)

\(l_{P}\) :

Length of the piezoelectric patches (m)

\(M\) :

Mass of CRB (kg)

\(m\) :

The number of generalized coordinates or the number of modes for each flexible appendage

\({\mathbf{M}}({\mathbf{q}})\) :

Inertia matrix

\({\mathbf{M}}_{0} ({\mathbf{q}})\), \(\Delta {\mathbf{M}}({\mathbf{q}})\) :

Known and uncertain parts of the inertia matrix

\(N\) :

Number of piezoelectric patches for each flexible appendage

\(N_{a}\) , \(N_{s}\) :

Number of actuator and sensor piezoelectric patches for each flexible appendage

\(Q\) :

First cross-sectional area moment of inertia (m3)

\(q_{j} (t)\) :

jTh generalized coordinate of the flexible appendages

\({\mathbf{q}}\), \({\dot{\mathbf{q}}}\), \({\mathbf{\ddot{q}}}\) :

A vector which includes position, angular position of the satellite and generalized coordinates of its flexible appendages and its time derivatives

\({\mathbf{q}}_{d}\), \({\dot{\mathbf{q}}}_{d}\), \({\mathbf{\ddot{q}}}_{d}\) :

Desired position, velocity and acceleration trajectories

\(r\) :

Distance from the beginning of the appendages to the center of the CRB

Ra:

Right flexible appendage

RAE:

Element of the right flexible appendage

\(s\) , \(\dot{s}\) :

Sliding surface and its time derivative

\(T\) :

Kinetic energy

\(t_{p}\) :

Thickness of each piezoelectric patch (m)

\(U\) :

Potential energy

\(u(x,t)\) :

Longitudinal displacement of the flexible appendage (m)

\(V\), \(\dot{V}\) :

The Lyapunov function and its time derivative

\(V_{p}\) :

Voltage of each piezoelectric patch (V)

\({\mathbf{V}}\) :

Velocity vector (m/s)

\(W_{nc}\) :

Work done by the control forces and control torque

\(w(x,t)\) :

Lateral displacement of the flexible appendages (m)

\(XY\) :

Inertial reference frame

\(x_{b} y_{b}\) :

Fixed body coordinate system on the CRB

\(\beta\), \(k\), \(\kappa\), \(\lambda\) :

Constant coefficients in the Lyapunov function and proposed controllers

\(\Gamma\), \(\hat{\Gamma }\) :

The upper bound of lumped uncertainties and disturbances, estimated value of Γ

\(\tilde{\Gamma }\) :

Difference between \(\hat{\Gamma }\) and Γ (i.e., \(\hat{\Gamma } - \Gamma\))

\(\delta\) :

The variation operator

\(\delta_{D}\) :

The Dirac delta function

\(\overline{\delta }\) :

Boundary layer width of the proposed controllers

\(\varepsilon_{{x_{i} }}\) :

Longitudinal normal strain for left or right flexible appendage

\(\varepsilon_{p}\) :

Dielectric constant of the piezoelectric material

\(\theta (t)\) :

Rotation angle of the satellite (rad)

\(\upsilon\) :

Adaptive gain of the ASTGNSM controller

\(\rho\) :

Density (kg/m3)

\(\sigma_{{x_{i} }}\) :

Longitudinal normal stress for left or right appendage (N/m2)

\(\tau\) :

Control torque (N.m)

\({{\varvec{\uptau}}}\) :

Control inputs vector

\({{\varvec{\uptau}}}_{d}\) :

External disturbances vector

\({{\varvec{\uptau}}}_{0}\), \({{\varvec{\uptau}}}_{1}\) :

Equivalent and axillary control laws

\(\phi_{j} (x)\) :

jth known independent comparison function of the assumed mode method

\(\phi_{s} (x)\) :

sth known independent comparison function of the Galerkin method

\(a\) :

Flexible appendage

\(L\) :

Left side

\(R\) :

Right side

LAj , LS j :

jth piezoelectric actuator and sensor of the left panel

LPi :

ith piezoelectric patch of the left panel

PZT, \(p\) :

Piezoelectric patch

RAj , RS j :

jth piezoelectric actuator and sensor of the right panel

RPi :

ith piezoelectric patch of the right panel

\(x_{b}\), \(y_{b}\) :

xb And yb axis directions

elec:

Electrical part

elec-mech:

Electromechanical part

mech:

Mechanical part

References

  1. He, W., Ge, S.S.: Dynamic modeling and vibration control of a flexible satellite. IEEE Trans. Aerosp. Elect. Syst. 51(2), 1422–1431 (2015)

    Article  Google Scholar 

  2. Fu, Y., Liu, Y., Huang, D.: Adaptive boundary control and vibration suppression of a flexible satellite system with input saturation. Trans. Instit. Meas. Control 41(9), 2666–2677 (2019)

    Article  Google Scholar 

  3. Rad, H.K., Salarieh, H., Alasty, A., Vatankhah, R.: Boundary control of anti-symmetric vibration of satellite with flexible appendages in planar motion with exponential stability. Acta Astronaut. 147, 219–230 (2018)

    Article  Google Scholar 

  4. Meng, T., He, W., Yang, H., Liu, J.-K., You, W.: Vibration control for a flexible satellite system with output constraints. Nonlinear Dyn. 85(4), 2673–2686 (2016)

    Article  Google Scholar 

  5. Azadi, M., Fazelzadeh, S., Eghtesad, M., Azadi, E.: Vibration suppression and adaptive-robust control of a smart flexible satellite with three axes maneuvering. Acta Astronaut. 69(5–6), 307–322 (2011)

    Article  Google Scholar 

  6. Azadi, E., Eghtesad, M., Fazelzadeh, S., Azadi, M.: Vibration suppression of smart nonlinear flexible appendages of a rotating satellite by using hybrid adaptive sliding mode/Lyapunov control. J. Vib. Control 19(7), 975–991 (2013)

    Article  MathSciNet  Google Scholar 

  7. Rad, H.K., Salarieh, H., Alasty, A., Vatankhah, R.: Boundary control of flexible satellite vibration in planar motion. J. Sound Vib. 432, 549–568 (2018)

    Article  Google Scholar 

  8. Vakilzadeh, M., Eghtesad, M., Nami, M.R., Khajepour, G.: Vibration suppression of a rotating hub-beam system with a flexible support using fractional order sliding mode control. Trans. Can. Soc. Mech. Eng. 41(4), 627–643 (2017)

    Article  Google Scholar 

  9. Huo, Y., Wang, Z.: Dynamic analysis of a rotating double-tapered cantilever Timoshenko beam. Arch. Appl. Mech. 86(6), 1147–1161 (2016)

    Article  Google Scholar 

  10. Lotfazar, A., Eghtesad, M., Najafi, A.: Vibration control and trajectory tracking for general in-plane motion of an Euler-Bernoulli beam via two-time scale and boundary control methods. J. Vib. Acoust. 130, 5 (2008)

    Article  Google Scholar 

  11. Cao, F., Liu, J.: Vibration control for a rigid-flexible manipulator with full state constraints via Barrier Lyapunov Function. J. Sound Vib. 406, 237–252 (2017)

    Article  Google Scholar 

  12. Ji, N., Liu, J.: Adaptive vibration control for flexible satellite with output constraint and unknown control direction. J. Frank. Inst. 357(15), 10600–10625 (2020)

    Article  MathSciNet  Google Scholar 

  13. Fan, L., Liu, X., Cai, G.-P.: Attitude tracking and vibration control of membrane antenna satellite. J. Frank. Inst. 357(15), 10584–10599 (2020)

    Article  MathSciNet  Google Scholar 

  14. Sun, J., Li, S., Huang, J., Zhu, D.: Robust coordinated control for large flexible spacecraft based on consensus theory. J. Frank. Inst. 357(9), 5359–5379 (2020)

    Article  MathSciNet  Google Scholar 

  15. Ye, D., Xiao, Y.: Robust output feedback attitude tracking control for rigid-flexible coupling spacecraft. J. Frank. Inst. 355(18), 9209–9223 (2018)

    Article  MathSciNet  Google Scholar 

  16. Meirovitch, L.: Fundamentals of vibrations. Waveland Press, Long Grove (2010)

    Google Scholar 

  17. Hassan, M., Dubay, R., Li, C., Wang, R.: Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(6), 311–323 (2007)

    Article  Google Scholar 

  18. Hu, Q., Ma, G.: Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp. Sci. Technol. 9(4), 307–317 (2005)

    Article  Google Scholar 

  19. Baghi, B., Kabganian, M., Nadafi, R., Arabi, E.: Three-axis attitude stabilization of a flexible satellite using non-linear PD controller. Trans. Inst. Meas. Control 40(2), 591–605 (2018)

    Article  Google Scholar 

  20. Zhang, L., Xu, S., Ju, X., Cui, N.: Flexible satellite control via fixed-time prescribed performance control and fully adaptive component synthesis vibration suppression. Nonlinear Dyn. 100(4), 3413–3432 (2020)

    Article  Google Scholar 

  21. Slotine, J.-J.E., Li, W.: Applied nonlinear control, vol. 1. Prentice hall Englewood Cliffs, New Jersey (1991)

    MATH  Google Scholar 

  22. Huang, Y.-J., Kuo, T.-C., Chang, S.-H.: Adaptive sliding-mode control for nonlinearsystems with uncertain parameters. IEEE Trans. Syst. Man Cybern. B (Cybern.) 38(2), 534–539 (2008)

    Article  Google Scholar 

  23. Liu, L., Han, Z., Li, W.: Global sliding mode control and application in chaotic systems. Nonlinear Dyn. 56(1–2), 193–198 (2009)

    Article  MathSciNet  Google Scholar 

  24. Mobayen, S., Tchier, F.: A novel robust adaptive second-order sliding mode tracking control technique for uncertain dynamical systems with matched and unmatched disturbances. Int. J. Control Autom. Syst. 15(3), 1097–1106 (2017)

    Article  Google Scholar 

  25. Mobayen, S., Tchier, F., Ragoub, L.: Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control. Int. J. Syst. Sci. 48(9), 1990–2002 (2017)

    Article  MathSciNet  Google Scholar 

  26. Soltanpour, M.R., Khooban, M.H., Soltani, M.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(3), 433 (2014)

    Article  Google Scholar 

  27. Sun, T., Pei, H., Pan, Y., Zhou, H., Zhang, C.: Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14–15), 2377–2384 (2011)

    Article  Google Scholar 

  28. Chen, N., Song, F., Li, G., Sun, X., Ai, C.: An adaptive sliding mode backstepping control for the mobile manipulator with nonholonomic constraints. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2885–2899 (2013)

    Article  MathSciNet  Google Scholar 

  29. Chen, C.-Y., Li, T.-H.S., Yeh, Y.-C., Chang, C.-C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19(2), 156–166 (2009)

    Article  Google Scholar 

  30. Zeinali, M., Notash, L.: Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mech. Mach. Theory 45(1), 80–90 (2010)

    Article  MathSciNet  Google Scholar 

  31. Li, P., Ma, J., Zheng, Z.: Robust adaptive sliding mode control for uncertain nonlinear MIMO system with guaranteed steady state tracking error bounds. J. Frank. Inst. 353(2), 303–321 (2016)

    Article  MathSciNet  Google Scholar 

  32. Chen, M., Yu, J.: Disturbance observer-based adaptive sliding mode control for near-space vehicles. Nonlinear Dyn. 82(4), 1671–1682 (2015)

    Article  MathSciNet  Google Scholar 

  33. Lai, W.M., Rubin, D.H., Rubin, D., Krempl, E.: Introduction to continuum mechanics. Butterworth-Heinemann, Oxford (2009)

    MATH  Google Scholar 

  34. Vatankhah, R., Asemani, M.H.: Output feedback control of piezoelectrically actuated non-classical micro-beams using TS fuzzy model. J. Frank. Inst. 354(2), 1042–1065 (2017)

    Article  MathSciNet  Google Scholar 

  35. Preumont, A.: Mechatronics. Springer, New York (2006)

    MATH  Google Scholar 

  36. Gere, J., Timoshenko, S.: Mechanics of materials, 1997. PWS-KENT Publishing Company, 534(92174): 4 (1997)

  37. Meriam, J.L., Kraige, L.G., Bolton, J.N.: Statics: Engineering Mechanics. Wiley, Hoboken (2017)

    MATH  Google Scholar 

  38. Boukattaya, M., Mezghani, N., Damak, T.: Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems. ISA Trans. 77, 1–19 (2018)

    Article  Google Scholar 

  39. Mobayen, S., Tchier, F.: Design of an adaptive chattering avoidance global sliding mode tracker for uncertain non-linear time-varying systems. Trans. Inst. Meas. Control 39(10), 1547–1558 (2017)

    Article  Google Scholar 

  40. Shtessel, Y. B., Moreno, J. A., Plestan, F., Fridman, L. M., Poznyak, A. S.: Super-twisting adaptive sliding mode control: A Lyapunov design. In: Proceedings of the 49th IEEE conference on decision and control (CDC), pp. 5109–5113: IEEE (2010)

  41. Singiresu, S.R.: Mechanical vibrations. Addison Wesley Boston, Boston, MA (1995)

    MATH  Google Scholar 

  42. Thomson, W.: Theory of vibration with applications. CrC Press, New York (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Vatankhah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Applying the variation operator to Eqs. (3) and (10) leads to Eqs. (A.1) and (A.2), respectively.

$$ \begin{aligned} \delta T = & M\dot{X}\delta \dot{X} + \left( {\rho A} \right)_{{La}} \int\limits_{0}^{{l_{a} }} {\delta \dot{X}{{d}}x} \\ & + \left( {\rho A} \right)_{{Ra}} \int\limits_{0}^{{l_{a} }} {\delta \dot{X}{{d}}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{LP_{i} }} \int\limits_{{LP_{i} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{L} } \right)\cos \theta } \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta - \left( {x + r} \right)\dot{\theta } + \dot{w}_{L} } \right)\left( { - \sin \theta } \right)} \right]} \right\}\delta \dot{X}{{d}}x} } \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{RP_{i} }} \int\limits_{{RP_{i} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{R} } \right)\cos \theta } \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta + \left( {x + r} \right)\dot{\theta } + \dot{w}_{R} } \right)\left( { - \sin \theta } \right)} \right]} \right\}\delta \dot{X}{{d}}x} } \\ & + M\dot{Y}\delta \dot{Y} + \left( {\rho A} \right)_{{La}} \int\limits_{0}^{{l_{a} }} {\delta \dot{Y}{{d}}x} \\ & + \left( {\rho A} \right)_{{Ra}} \int\limits_{0}^{{l_{a} }} {\delta \dot{Y}{{d}}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{LP_{i} }} \int\limits_{{LP_{i} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{L} } \right)\sin \theta } \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta - \left( {x + r} \right)\dot{\theta } + \dot{w}_{L} } \right)\left( {\cos \theta } \right)} \right]} \right\}\delta \dot{Y}{{d}}x} } \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{RP_{i} }} \int\limits_{{RP_{i} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{R} } \right)\sin \theta } \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta + \left( {x + r} \right)\dot{\theta } + \dot{w}_{R} } \right)\left( {\cos \theta } \right)} \right]} \right\}\delta \dot{Y}{d}x} } \\ & + J\dot{\theta }\delta \dot{\theta } + \left( {\rho A} \right)_{{La}} \int\limits_{0}^{{l_{a} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{L} } \right)\left( { - w_{L} } \right)} \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta - \left( {x + r} \right)\dot{\theta } + \dot{w}_{L} } \right)\left( { - \left( {x + r} \right)} \right)} \right]} \right\}\delta \dot{\theta }{{d}}x} \\ & + \left( {\rho A} \right)_{{Ra}} \int\limits_{0}^{{l_{a} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{R} } \right)\left( { - w_{R} } \right)} \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta + \left( {x + r} \right)\dot{\theta } + \dot{w}_{R} } \right)\left( {x + r} \right)} \right]} \right\}\delta \dot{\theta }{d}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{LP_{i} }} \int\limits_{{LP_{i} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{L} } \right)\left( { - w_{L} } \right)} \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta - \left( {x + r} \right)\dot{\theta } + \dot{w}_{L} } \right)\left( { - \left( {x + r} \right)} \right)} \right]} \right\}\delta \dot{\theta }{d}x} } \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{RP_{i} }} \int\limits_{{RP_{i} }} {\left\{ {\left[ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{R} } \right)\left( { - w_{R} } \right)} \right] + \left[ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta + \left( {x + r} \right)\dot{\theta } + \dot{w}_{R} } \right)\left( {x + r} \right)} \right]} \right\}\delta \dot{\theta }{d}x} } \\ & + \left( {\rho A} \right)_{{La}} \int\limits_{0}^{{l_{a} }} {\delta \theta {d}x} \\ & + \left( {\rho A} \right)_{{Ra}} \int\limits_{0}^{{l_{a} }} {\delta \theta {d}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{LP_{i} }} \int\limits_{{LP_{i} }} {\left\{ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{L} } \right)\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta } \right) + \left( {\dot{Y}\cos \theta - \dot{X}\sin \theta - \left( {x + r} \right)\dot{\theta } + \dot{w}_{L} } \right)\left( { - \left( {\dot{Y}\sin \theta + \dot{X}\cos \theta } \right)} \right)} \right\}\delta \theta {d}x} } \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{RP_{i} }} \int\limits_{{RP_{i} }} {\left\{ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{R} } \right)\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta } \right) + \left( {\dot{Y}\cos \theta - \dot{X}\sin \theta + \left( {x + r} \right)\dot{\theta } + \dot{w}_{R} } \right)\left( { - \left( {\dot{Y}\sin \theta + \dot{X}\cos \theta } \right)} \right)} \right\}\delta \theta {d}x} } \\ & + \left( {\rho A} \right)_{{La}} \int\limits_{0}^{{l_{a} }} {\left\{ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta - \left( {x + r} \right)\dot{\theta } + \dot{w}_{L} } \right)} \right\}\delta \dot{w}_{L} {d}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{LP_{i} }} \int\limits_{{LP_{i} }} {\left\{ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta - \left( {x + r} \right)\dot{\theta } + \dot{w}_{L} } \right)} \right\}\delta \dot{w}_{L} {d}x} } \\ & + \left( {\rho A} \right)_{{La}} \int\limits_{0}^{{l_{a} }} {\left\{ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{L} } \right)\left( { - \dot{\theta }} \right)} \right\}\delta w_{L} {d}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{LP_{i} }} \int\limits_{{LP_{i} }} {\left\{ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{L} } \right)\left( { - \dot{\theta }} \right)} \right\}\delta w_{L} {d}x} } \\ & + \left( {\rho A} \right)_{{Ra}} \int\limits_{0}^{{l_{a} }} {\left\{ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta + \left( {x + r} \right)\dot{\theta } + \dot{w}_{R} } \right)} \right\}\delta \dot{w}_{R} {d}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{RP_{i} }} \int\limits_{{RP_{i} }} {\left\{ {\left( {\dot{Y}\cos \theta - \dot{X}\sin \theta + \left( {x + r} \right)\dot{\theta } + \dot{w}_{R} } \right)} \right\}\delta \dot{w}_{R} {d}x} } \\ & + \left( {\rho A} \right)_{{Ra}} \int\limits_{0}^{{l_{a} }} {\left\{ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{R} } \right)\left( { - \dot{\theta }} \right)} \right\}\delta w_{R} {d}x} \\ & + \sum\limits_{{i = 1}}^{N} {\left( {\rho A} \right)_{{RP_{i} }} \int\limits_{{RP_{i} }} {\left\{ {\left( {\dot{X}\cos \theta + \dot{Y}\sin \theta - \dot{\theta }w_{R} } \right)\left( { - \dot{\theta }} \right)} \right\}\delta w_{R} {d}x} } \\ \end{aligned} $$
(A.1)
$$ \begin{aligned} \delta U = & \int\limits_{La} {\left[ {\left( {EI} \right)_{La} w^{\prime\prime}_{L} - \frac{1}{2}\left( {EQ} \right)_{La} \left( {w^{\prime}_{L} } \right)^{2} } \right]\delta w^{\prime\prime}_{L} {d}x + \int\limits_{La} {\left[ { - \left( {EQ} \right)_{La} w^{\prime\prime}_{L} w^{\prime}_{L} + \frac{1}{2}\left( {EA} \right)_{La} \left( {w^{\prime}_{L} } \right)^{3} } \right]\delta w^{\prime}_{L} {d}x} } \\ & \; + \int\limits_{Ra} {\left[ {\left( {EI} \right)_{Ra} w^{\prime\prime}_{R} - \frac{1}{2}\left( {EQ} \right)_{Ra} \left( {w^{\prime}_{R} } \right)^{2} } \right]\delta w^{\prime\prime}_{R} {d}x + \int\limits_{Ra} {\left[ { - \left( {EQ} \right)_{Ra} w^{\prime\prime}_{R} w^{\prime}_{R} + \frac{1}{2}\left( {EA} \right)_{Ra} \left( {w^{\prime}_{R} } \right)^{3} } \right]\delta w^{\prime}_{R} {d}x} } \\ & \; + \sum\limits_{i = 1}^{N} {\int\limits_{{LP_{i} }} {\left[ {\left( {E_{p} I_{p} } \right)_{{LP_{i} }} w^{\prime\prime}_{L} - \frac{1}{2}\left( {E_{p} Q_{p} } \right)_{{LP_{i} }} \left( {w^{\prime}_{L} } \right)^{2} } \right]\delta w^{\prime\prime}_{L} {d}x + \int\limits_{{LP_{i} }} {\left[ { - \left( {E_{p} Q_{p} } \right)_{{LP_{i} }} w^{\prime\prime}_{L} w^{\prime}_{L} + \frac{1}{2}\left( {E_{p} A_{p} } \right)_{{LP_{i} }} \left( {w^{\prime}_{L} } \right)^{3} } \right]\delta w^{\prime}_{L} {d}x} } } \\ & \; + \sum\limits_{i = 1}^{{N_{a} }} { - \int\limits_{{LA_{i} }} {\left( {\frac{{e_{31} \left( { - Q_{p} } \right)V_{p} }}{{t_{p} }}} \right)_{{LA_{i} }} \delta w^{\prime\prime}_{L} {d}x} - \int\limits_{{LA_{i} }} {\left( {\frac{{e_{31} A_{p} V_{p} }}{{t_{p} }}} \right)_{{LA_{i} }} w^{\prime}_{L} \delta w^{\prime}_{L} {d}x} } \\ & \; + \sum\limits_{i = 1}^{N} {\int\limits_{{RP_{i} }} {\left[ {\left( {E_{p} I_{p} } \right)_{{RP_{i} }} w^{\prime\prime}_{R} - \frac{1}{2}\left( {E_{p} Q_{p} } \right)_{{RP_{i} }} \left( {w^{\prime}_{R} } \right)^{2} } \right]\delta w^{\prime\prime}_{R} {d}x + \int\limits_{{RP_{i} }} {\left[ { - \left( {E_{p} Q_{p} } \right)_{{RP_{i} }} w^{\prime\prime}_{R} w^{\prime}_{R} + \frac{1}{2}\left( {E_{p} A_{p} } \right)_{{RP_{i} }} \left( {w^{\prime}_{R} } \right)^{3} } \right]\delta w^{\prime}_{R} {d}x} } } \\ & \; + \sum\limits_{i = 1}^{{N_{a} }} { - \int\limits_{{RA_{i} }} {\left( {\frac{{e_{31} \left( { - Q_{p} } \right)V_{p} }}{{t_{p} }}} \right)_{{RA_{i} }} \delta w^{\prime\prime}_{R} {d}x} - \int\limits_{{RA_{i} }} {\left( {\frac{{e_{31} A_{p} V_{p} }}{{t_{p} }}} \right)_{{RA_{i} }} w^{\prime}_{R} \delta w^{\prime}_{R} {d}x} } \\ & \; + \sum\limits_{i = 1}^{{N_{s} }} {\left\{ {\left( {\frac{{e_{31} Q_{p} }}{{t_{p} }}} \right)_{{LS_{i} }} \int\limits_{{LS_{i} }} {w^{\prime\prime}_{L} {d}x} - \frac{1}{2}\left( {\frac{{e_{31} A_{p} }}{{t_{p} }}} \right)_{{LS_{i} }} \int\limits_{{LS_{i} }} {\left( {w^{\prime}_{L} } \right)^{2} {d}x} + \left( {\frac{{\varepsilon_{p} A_{p} l_{p} }}{{t_{p}^{2} }}} \right)_{{LS_{i} }} V_{{LS_{i} }} } \right\}\delta V_{{LS_{i} }} } \\ & \; + \sum\limits_{i = 1}^{{N_{s} }} {\left\{ {\left( {\frac{{e_{31} Q_{p} }}{{t_{p} }}} \right)_{{RS_{i} }} \int\limits_{{RS_{i} }} {w^{\prime\prime}_{R} {d}x} - \frac{1}{2}\left( {\frac{{e_{31} A_{p} }}{{t_{p} }}} \right)_{{RS_{i} }} \int\limits_{{RS_{i} }} {\left( {w^{\prime}_{R} } \right)^{2} {d}x} + \left( {\frac{{\varepsilon_{p} A_{p} l_{p} }}{{t_{p}^{2} }}} \right)_{{RS_{i} }} V_{{RS_{i} }} } \right\}\delta V_{{RS_{i} }} } \\ \end{aligned} $$
(A.2)

Appendix B

The relations obtained from integration by parts (B.1) and (B.2) are used in the simplification of Eqs. (A.1) and (A.2) to obtain the equations of motion, the equations of sensors and the boundary conditions of the system.

$$ \left\{ \begin{gathered} \int\limits_{{t_{1} }}^{{t_{2} }} {\int\limits_{a}^{b} {\dot{w}\delta \dot{w}{d}x} {d}t = \int\limits_{a}^{b} {\left( {\dot{w}\delta w\left| {_{{t_{1} }}^{{t_{2} }} } \right. - \int\limits_{{t_{1} }}^{{t_{2} }} {\ddot{w}\delta w{d}t} } \right){d}x} } \hfill \\ \int\limits_{a}^{b} {w^{\prime}\delta w^{\prime}{d}x = w^{\prime}\delta w\left| {_{a}^{b} } \right.} - \int\limits_{a}^{b} {w^{\prime\prime}\delta w{d}x} \hfill \\ \int\limits_{a}^{b} {w^{\prime\prime}\delta w^{\prime\prime}{d}x = w^{\prime\prime}\delta w^{\prime}\left| {_{a}^{b} } \right.} - \int\limits_{a}^{b} {w^{\prime\prime\prime}\delta w^{\prime}{d}x = \int\limits_{a}^{b} {w^{\prime\prime\prime\prime}\delta w{d}x + w^{\prime\prime}\delta w^{\prime}\left| {_{a}^{b} } \right.} } - w^{\prime\prime\prime}\delta w\left| {_{a}^{b} } \right. \hfill \\ \int\limits_{a}^{b} {\delta w^{\prime\prime}{d}x = \int\limits_{a}^{b} {[\delta_{D} (x - b) - \delta_{D} (x - a)]\delta w^{\prime}{d}x = [\delta_{D} (x - b) - \delta_{D} (x - a)]\delta w\left| {_{a}^{b} } \right.} } - \int\limits_{a}^{b} {[\delta^{\prime}_{D} (x - b) - \delta^{\prime}_{D} (x - a)]\delta w{d}x} \hfill \\ \end{gathered} \right. $$
(B.1)
$$\begin{gathered} \delta U^{*} = \overbrace {{\int_{a}^{b} {\underbrace {{\left[ {EIw^{\prime\prime} - \frac{1}{2}EQw^{{\prime}{2}} } \right]}}_{u}\underbrace {{\delta w^{\prime\prime}{d}x}}_{{{d}v}}} }}^{{I_{1} }} + \overbrace {{\int_{a}^{b} {\underbrace {{\left[ { - EQw^{\prime\prime}w^{\prime} + \frac{1}{2}EAw^{{\prime}{3}} } \right]}}_{{u_{2} }}\underbrace {{\delta w^{\prime}{d}x}}_{{{d}v_{2} }}} }}^{{I_{2} }} \hfill \\ \left\{ \begin{gathered} {d}u = \left( {EIw^{\prime\prime\prime} - EQw^{\prime}w^{\prime\prime}} \right){d}x \hfill \\ v = \delta w^{\prime} \hfill \\ \end{gathered} \right. \hfill \\ \to \left. {I_{1} = \left( {EIw^{\prime\prime} - \frac{1}{2}EQw^{{\prime}{2}} } \right)\delta w^{\prime}} \right|_{a}^{b} - \overbrace {{\int_{a}^{b} {\underbrace {{\left( {EIw^{\prime\prime\prime} - EQw^{\prime}w^{\prime\prime}} \right)}}_{{u_{1} }}\underbrace {{\delta w^{\prime}{d}x}}_{{{d}v_{1} }}} }}^{{I_{11} }} \hfill \\ \left\{ \begin{gathered} {d}u_{1} = \left( {EIw^{\prime\prime\prime\prime} - EQ\left( {w^{{\prime\prime}{2}} + w^{\prime}w^{\prime\prime\prime}} \right)} \right){d}x \hfill \\ v_{1} = \delta w \hfill \\ \end{gathered} \right. \hfill \\ \to I_{11} = \left. {\left( {EIw^{\prime\prime\prime} - EQw^{\prime}w^{\prime\prime}} \right)\delta w} \right|_{a}^{b} - \int_{a}^{b} {\left( {EIw^{\prime\prime\prime\prime} - EQ\left( {w^{{\prime\prime}{2}} + w^{\prime}w^{\prime\prime\prime}} \right)} \right)\delta w{d}x} \hfill \\ \to I_{1} = \left. {\left( {EIw^{\prime\prime} - \frac{1}{2}EQw^{{\prime}{2}} } \right)\delta w^{\prime}} \right|_{a}^{b} - \left. {\left( {EIw^{\prime\prime\prime} - EQw^{\prime}w^{\prime\prime}} \right)\delta w} \right|_{a}^{b} + \int_{a}^{b} {\left( {EIw^{\prime\prime\prime\prime} - EQ\left( {w^{{\prime\prime}{2}} + w^{\prime}w^{\prime\prime\prime}} \right)} \right)\delta w{d}x} \hfill \\ \left\{ \begin{gathered} {d}u_{2} = \left( { - EQ\left( {w^{\prime\prime\prime}w^{\prime} + w^{{\prime\prime}{2}} } \right) + \frac{3}{2}EAw^{{\prime}{2}} w^{\prime\prime}} \right){d}x \hfill \\ v_{2} = \delta w \hfill \\ \end{gathered} \right. \hfill \\ \to I_{2} = \left. {\left( { - EQw^{\prime\prime}w^{\prime\prime} + \frac{1}{2}EAw^{{\prime}{3}} } \right)\delta w} \right|_{a}^{b} - \int_{a}^{b} {\left( { - EQ\left( {w^{\prime\prime\prime}w^{\prime} + w^{{\prime\prime}{2}} } \right) + \frac{3}{2}EAw^{{\prime}{2}} w^{\prime\prime}} \right)\delta w{d}x} \hfill \\ \delta U^{*} = 0 \to \left\{ \begin{gathered} + \int_{a}^{b} {\left( {EIw^{\prime\prime\prime\prime} - EQ\left( {w^{{\prime\prime}{2}} + w^{\prime}w^{\prime\prime\prime}} \right)} \right)\delta w{d}x} - \int_{a}^{b} {\left( { - EQ\left( {w^{\prime\prime\prime}w^{\prime} + w^{{\prime\prime}{2}} } \right) + \frac{3}{2}EAw^{{\prime}{2}} w^{\prime\prime}} \right)\delta w{d}x} = 0 \hfill \\ \to \int_{a}^{b} {\left( {EIw^{\prime\prime\prime\prime} - \frac{3}{2}EAw^{{\prime}{2}} w^{\prime\prime}} \right){d}x = 0 \to Eq.} \hfill \\ - \left. {\left( {EIw^{\prime\prime\prime} - EQw^{\prime}w^{\prime\prime}} \right)\delta w} \right|_{a}^{b} + \left. {\left( { - EQw^{\prime\prime}w^{\prime\prime} + \frac{1}{2}EAw^{{\prime}{3}} } \right)\delta w} \right|_{a}^{b} = 0 \to \mathrm{Boundary\;condition} \hfill \\ \left. {\left( {EIw^{\prime\prime} - \frac{1}{2}EQw^{{\prime}{2}} } \right)\delta w^{\prime}} \right|_{a}^{b} = 0 \to \mathrm{Boundary\;condition} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$
(B.2)

Appendix C

The relations obtained from integration by parts (C.1) are used in the process of reducing the order of Eqs. (15) and (16) after the discretization process.

$$ \left\{ \begin{gathered} \int\limits_{a}^{b} {vw^{\prime\prime\prime\prime}{d}x = \int\limits_{a}^{b} {v^{\prime\prime}w^{\prime\prime}{d}x + vw^{\prime\prime\prime}\left| {_{a}^{b} - v^{\prime}w^{\prime\prime}\left| {_{a}^{b} } \right.} \right.} } \hfill \\ \int\limits_{a}^{b} {vw^{\prime\prime}(w^{\prime})^{2} {d}x = \frac{1}{3}v(w^{\prime})^{3} \left| {_{a}^{b} } \right. - \frac{1}{3}\int\limits_{a}^{b} {v^{\prime}(w^{\prime})^{3} {d}x} } \hfill \\ \int\limits_{a}^{b} {v[\delta^{\prime}_{D} (x - b) - \delta^{\prime}_{D} (x - a)]{d}x = v[\delta_{D} (x - b) - \delta_{D} (x - a)]\left| {_{a}^{b} } \right. - \int\limits_{a}^{b} {v^{\prime}[\delta_{D} (x - b) - \delta_{D} (x - a)]{d}x} } \hfill \\ = v[\delta_{D} (x - b) - \delta_{D} (x - a)]\left| {_{a}^{b} - [v^{\prime}(b) - v^{\prime}(a)] = } \right.v[\delta_{D} (x - b) - \delta_{D} (x - a)]\left| {_{a}^{b} } \right. - \int\limits_{a}^{b} {v^{\prime\prime}(x){d}x} \hfill \\ \end{gathered} \right. $$
(C.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, H., Vatankhah, R. & Farid, M. General planar motion modeling and control of a smart rigid-flexible satellite considering large deflections. Nonlinear Dyn 108, 911–939 (2022). https://doi.org/10.1007/s11071-022-07242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07242-8

Keywords

Navigation