Skip to main content
Log in

Dynamical analysis and chaos control of MEMS resonators by using the analog circuit

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the chaos control problem of microelectromechanical system (MEMS) resonators by using the analog circuits. The dynamical analysis, based on bifurcation diagrams, phase diagrams and Lyapunov exponents (LEs), illustrates that transient chaotic behaviors and chaotic behaviors strongly depend on system parameters and the initial conditions of the MEMS resonator. Then, based on the energy flow theory, the circuit differential equation is consistent with its differential equation governing the dynamics, which could mimic the micro-resonator dynamic properties. Accordingly, an analog circuit is designed, and abundant experimental data reveal chaotic behaviors of the MEMS resonator at around 58.791 Hz (1.71 V) and 58.704 Hz (1.68 V). After that, to suppress harmful chaotic oscillation, an adaptive control scheme is proposed and verified by an analog circuit consisting of an error module, a parameter update module and a control input module. Finally, the experimental results of the circuit control system prove the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Islam, M.S., Singh, S.K., Lee, J., Xie, Y., Zorman, C.A., et al.: A programmable sustaining amplifier for flexible multimode MEMS-referenced oscillators. IEEE Trans. Circuits Syst. I: Regular Papers 66(4), 1405–1418 (2019)

    Article  Google Scholar 

  2. Deng, G., Zhu, D., Wang, X., et al.: Strongly coupled nanotube electromechanical resonators. Nano Lett. 16(9), 5456–5462 (2016)

    Article  Google Scholar 

  3. Luo, S., Li, S., Guan, Y., Ouakad, H.M., Karami, F.: Dynamical analysis and anti-oscillation-based adaptive control of the FO arch MEMS with optimality. Nonlinear Dyn. 101(1), 293–309 (2020)

    Article  Google Scholar 

  4. Prikhodko, I.P., Trusov, A.A., Shkel, A.M.: Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing. Sensors Actuators A. 201, 517–524 (2013)

    Article  Google Scholar 

  5. Fei, J., Zhou, J.: Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator. IEEE Trans. Syst. Man Cybern. B. 42, 1599–1607 (2012)

    Article  Google Scholar 

  6. Lanniel, A., Boeser, T., Alpert, T., Ortmanns, M.: Noise analysis of charge-balanced readout circuits for MEMS accelerometers. IEEE Trans. Circuits Syst. I: Regular Papers 68(1), 175–184 (2020)

    Article  Google Scholar 

  7. Nikpourian, A., Ghazavi, M.R., Azizi, S.: On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. Int. J. Mech. Mater. Des. 14, 1–19 (2018)

    Article  Google Scholar 

  8. Li, M., Chen, C., Li, S.: A study on the design parameters for MEMS oscillators incorporating nonlinearities. IEEE Trans. Circuits Syst. I: Regular Papers 65(10), 3424–3434 (2018)

    Article  Google Scholar 

  9. Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.: Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope. Appl. Math. Model. 35(12), 5903–5919 (2011)

    Article  MathSciNet  Google Scholar 

  10. Gholami, R., Ansari, R., Rouhi, H.: Studying the effects of small scale and Casimir force on the nonlinear pull-in instability and vibrations of FGM microswitches under electrostatic actuation. Int. J. Nonlin. Mech. 77, 193–207 (2015)

    Article  Google Scholar 

  11. Mojahedi, M.: Size dependent dynamic behavior of electrostatically actuated microbridges. Int. J. Eng. Sci. 111, 74–85 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gholami, R., Ansari, R., Gholami, Y.: Nonlocal large-amplitude vibration of embedded higher-order shear deformable multiferroic composite rectangular nanoplates with different edge conditions. J. Intel. Mat. Syst. Str. 29(5), 944–968 (2018)

    Article  Google Scholar 

  13. Luo, S., Lewis, F.L., Song, Y., Garrappa, R.: Dynamical analysis and accelerated optimal stabilization of the fractional-order self-sustained electromechanical seismograph system with fuzzy wavelet neural network. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06330-5

    Article  Google Scholar 

  14. Liang, Y., Wang, G., Chen, G., Dong, Y., Yu, D., Lu, H.H.C.: S-type locally active memristor-based periodic and chaotic oscillators. IEEE Trans. Circuits Syst. I: Regular Papers 67(12), 5139–5152 (2020)

    Article  MathSciNet  Google Scholar 

  15. Luo, S., Lewis, F.L., Song, Y., Vamvoudakis, K.G.: Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer. Nonlinear Dyn. 100(1), 523–540 (2020)

    Article  Google Scholar 

  16. Sabarathinam, S., Thamilmaran, K.: Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators. Chaos, Solitons Fractals 73, 129–140 (2020)

    Article  MathSciNet  Google Scholar 

  17. Mahboob, I., Dupuy, R., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Hopf and period-doubling bifurcations in an electromechanical resonator. Appl. Phys. Lett. 109(7), 3587 (2016)

    Article  Google Scholar 

  18. Suresh, K., Prasad, A., Thamilmaran, K.: Birth of strange nonchaotic attractors through formation and merging of bubbles in a quasiperiodically forced Chuaʼs oscillator. Phys. Lett. A 377(8), 612–621 (2013)

    Article  MathSciNet  Google Scholar 

  19. Saha, L.M., Kataria, S.: On dynamics of nonlinear SFR resonator: chaos and complexity. Indian J. Indus. Appl. Math. 10(1), 91 (2019)

    Article  Google Scholar 

  20. He, S., Natiq, H., Mukherjee, S.: Multistability and chaos in a noise-induced blood flow. Eur. Phys. J. Spec. Top. 230, 1525–1533 (2021). https://doi.org/10.1140/epjs/s11734-021-00032-0

    Article  Google Scholar 

  21. Luo, S., Lewis, F.L., Song, Y., Ouakad, H.M.: Accelerated adaptive fuzzy optimal control of three coupled fractional-order chaotic electromechanical transducers. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2984998

    Article  Google Scholar 

  22. Lu, H.H.C., Yu, D.S., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a twin-t notch filter. IEEE Trans. Circuits Syst. I: Regular Papers 58(6), 1337–1344 (2011)

    Article  MathSciNet  Google Scholar 

  23. He, S., Sun, K., Peng, Y.: Detecting chaos in fractional-order nonlinear systems using the smaller alignment index. Phys. Lett. A 383(19), 2267–2271 (2019)

    Article  MathSciNet  Google Scholar 

  24. Tajaddodianfar, F., Yazdi, M., Pishkenari, H.N.: Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Microsyst. Technol. 23(6), 1913–1926 (2017)

    Article  Google Scholar 

  25. Ansari, R., Pourashraf, T., Gholami, R., Sahmani, S., Ashrafi, M.A.: Size-dependent resonant frequency and flexural sensitivity of atomic force microscope microcantilevers based on the modified strain gradient theory. Int. J. Optomechatroni. 9(2), 111–130 (2015)

    Article  Google Scholar 

  26. Luo, S., Li, S., Tajaddodianfar, F.: Adaptive chaos control of the fractional-order arch MEMS resonator. Nonlinear Dyn. 91(1), 539–547 (2018)

    Article  MathSciNet  Google Scholar 

  27. Zegadlo, K., Hung, N.V., Konotop, V.V., Zakrzewski, J., Trippenbach, M.: Route to chaos in a coupled microresonator system with gain and loss. Nonlinear Dyn. 97(1), 559–569 (2019)

    Article  Google Scholar 

  28. Luo, S., Lewis, F.L., Song, Y., Ouakad, H.M.: Optimal synchronization of unidirectionally coupled FO chaotic electromechanical devices with the hierarchical neural network. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3041350

    Article  Google Scholar 

  29. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes, B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69(4), 1837–1857 (2012)

    Article  MathSciNet  Google Scholar 

  30. Tavazoei, M.S., Haeri, M., Jafari, S., Bolouki, S., Siami, M.: Some applications of fractional calculus in suppression of chaotic oscillations. IEEE Trans. Ind. Electron. 55(11), 4094–4101 (2008)

    Article  Google Scholar 

  31. Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., Tajaddodianfar, F.: Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 22, 611–622 (2015)

    Article  Google Scholar 

  32. Ge, Z.M., Lin, T.N.: Chaos, chaos control and synchronization of electro-mechanical gyrostat system. J. Sound Vib. 259(3), 585–603 (2003)

    Article  MathSciNet  Google Scholar 

  33. Fossi, D., Woafo, P.: Generation of complex phenomena in a simple electromechanical system using the feedback control. Commun. Nonlinear Sci. Numer. Simul. 18(1), 209–218 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zhao, L., Luo, S., Yang, G., Dong, R.: Chaos analysis and stability control of the MEMS resonator via the type-2 sequential FNN. Microsyst. Technol. 21(3), 173–182 (2020)

    Google Scholar 

  35. Tusset, A.M., Janzen, F.C., Rocha, R.T., Balthazar, J.M.: On an optimal control applied in MEMS oscillator with chaotic behavior including fractional order. Complexity (2018). https://doi.org/10.1155/2018/5817597

    Article  MATH  Google Scholar 

  36. Song, Z., Sun, K.: Nonlinear and chaos control of a micro-electromechanical system by using second-order fast terminal sliding mode control. Commun Nonlinear Sci. Numer. Simul. 18(9), 2540–2548 (2013)

    Article  MathSciNet  Google Scholar 

  37. Luo, S., Lewis, F.L., Song, Y., Garrappa, R.: Neuro-adaptive optimal fixed-time synchronization and its circuit realization for unidirectionally coupled FO self-sustained electromechanical seismograph systems. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3121069

    Article  Google Scholar 

  38. Galias, Z.: Rigorous analysis of Chua’s circuit with a smooth nonlinearity. IEEE Trans. Circuits Syst. I: Regular Papers 63(12), 2304–2312 (2016)

    Article  Google Scholar 

  39. García-Martínez, M., Campos-Cantón, I., Campos-Cantón, E., Elikovsk, S.: Difference map and its electronic circuit realization. Nonlinear Dyn. 74(3), 819–830 (2013)

    Article  MathSciNet  Google Scholar 

  40. Kengne, J., Chedjou, J.C., Kenne, G., Kyamakya, K., Kom, G.H.: Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator. Nonlinear Dyn. 70(3), 2163–2173 (2012)

    Article  MathSciNet  Google Scholar 

  41. Sabarathinam, S., Thamilmaran, K.:Implementation of analog circuit and study of chaotic dynamics in a generalized Duffing-type MEMS resonator. Nonlinear Dyn. (2016)

  42. Haghighi, H.S., Markazi, R.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3091–3099 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 52065008), Science and Technology Planning Project of Guizhou Province (Nos. [2021]5634 and [2020]1Y274), Foundation for Innovative Research Groups of Universities in Chongqing (No. CXQTP20035), and Science and Technology Research Program of Chongqing Municipal Education Commission (Nos. KJZD-K201903001 and KJQN201803004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Luo.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest. This paper is authors’ original unpublished work and it has not been submitted to any other journal for reviews.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Ma, H., Li, F. et al. Dynamical analysis and chaos control of MEMS resonators by using the analog circuit. Nonlinear Dyn 108, 97–112 (2022). https://doi.org/10.1007/s11071-022-07227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07227-7

Keywords

Navigation