Skip to main content
Log in

A novel dynamic model and the oblique interaction for ocean internal solitary waves

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this article is the propagation of the internal solitary waves in the finite depth ocean. According to the perturbation and multi-scale analysis method, the (2+1)-dimensional Kadomtsev–Patviashvili-intermediate long-wave (KP-ILW) equation is derived. This is a novel model for describing the ocean internal solitary waves for the first time. It should be noted that when \(a_2=0\), the model is converted to the ILW equation; when \(h_1-h_0\rightarrow 0\), the model is converted to the KP equation; when \(h_1\rightarrow \infty \), the model is changed to the KP-BO equation. In order to further study the properties of the internal solitary waves, we explore the conservation of momentum, mass and energy of the internal solitary waves. Through the Hirota bilinear method, we obtain the Bäcklund transformation of the KP-ILW equation for the first time. This is of great significance to the construction of the infinite conservation law of the model. Then, the N-soliton solutions of the KP-ILW equation are given. Meanwhile, we study the oblique interaction of the internal solitary waves, which leads to the discovery of rogue waves and Mach reflection. In addition, we also discuss the effect of some parameters on Mach stem and get some conclusions. All these are particularly important for studies of large amplitude waves such as tsunamis in shallow water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dosser, H.V., Rainville, L.: Dynamics of the changing near-inertial internal wave field in the Arctic Ocean. J. Phys. Oceanogr. 46, 395–415 (2016)

    Article  Google Scholar 

  2. McHugh, J.P.: Internal waves in an unbounded non-Boussinesq flow. Appl. Math. Lett. 24, 1069–1074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhao, C., Xu, Z.H., Robertson, R., Li, Q., Wang, Y., Yin, B.S.: The three dimensional internal tide radiation and dissipation in the Mariana Arc-Trench system. J. Geophys. Res-Oceans. 126:e2020JC016502 (2021)

  4. Wongsaijai, B., Mouktonglang, T., Sukantamala, N., Poochinapan, K.: Compact structure-preserving approach to solitary wave in shallow water modeled by the Rosenau-RLW equation. Appl. Math. Comput. 340, 84–100 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Yu, D., Fu, L., Yang, H.W.: A new dynamic model of ocean internal solitary waves and the properties of its solutions. Commun. Nonlinear Sci. Numer. Simul. 95, 105622 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kurkina, O., Singh, N., Stepanyants, Y.: Structure of internal solitary waves in two-layer fluid at near-critical situation. Commun. Nonlinear Sci. Numer. Simul. 22, 1235–1242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sogut, D.V., Sogut, E., Farhadzadeh, A.: Interaction of a solitary wave with an array of macro-roughness elements in the presence of steady currents. Coast. Eng. 164, 103829 (2021)

    Article  Google Scholar 

  8. He, M., Khayyer, A., Gao, X.F., Xu, W.H., Liu, B.J.: Theoretical method for generating solitary waves using plunger-type wavemakers and its Smoothed Particle Hydrodynamics validation. Appl. Ocean. Res. 106, 102414 (2021)

    Article  Google Scholar 

  9. Liu, C.M., Vaivads, A., Graham, D.B., Khotyaintsev, Y.V., Fu, H.S., Johlander, A., Andre, M., Giles, B.L.: Ion-beam-driven intense electrostatic solitary waves in reconnection jet. Geophys. Res. Lett. 46, 12702–12710 (2019)

    Article  Google Scholar 

  10. Krishnan, E.V., Triki, H., Labidi, M., Biswas, A.: A study of shallow water waves with Gardner’s equation. Nonlinear Dynam. 66, 497–507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geng, M.H., Song, H.B., Guan, Y.X., Bai, Y.: Analyzing amplitudes of internal solitary waves in the northern South China Sea by use of seismic oceanography data. Deep-Sea. Res. Pt. I(146), 1–10 (2019)

    Google Scholar 

  12. Zhang, X.D., Li, X.F., Zhang, T.: Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images. J. Oceanol. Limnol. 38, 1435–1444 (2020)

    Article  Google Scholar 

  13. Tensubam, C.M., Raju, N.J., Dash, M.K., Barskar, H.: Estimation of internal solitary wave propagation speed in the Andaman Sea using multi-satellite images. Remote. Sens. Environ. 252, 112123 (2021)

    Article  Google Scholar 

  14. Li, Y.K., Wang, C.X., Liang, C.J., Li, J.D., Liu, W.A.: A simple early warning method for large internal solitary waves in the northern South China Sea. Appl. Ocean. Res. 61, 167–174 (2016)

    Article  Google Scholar 

  15. Liu, B.Q., Yang, H., Zhao, Z.X., Li, X.F.: Internal solitary wave propagation observed by tandem satellites. Geophys. Res. Lett. 41, 2077–2085 (2014)

    Article  Google Scholar 

  16. Li, X.F., Jackson, C.R., Pichel, W.G.: Internal solitary wave refraction at Dongsha Atoll. South China Sea. Geophys. Res. Lett. 40, 3128–3132 (2013)

    Article  Google Scholar 

  17. Keulegan, G.H.: Characteristics of internal solitary waves. J. Res. Natl. Bur. Stand. 51, 133–140 (1953)

    Article  MATH  Google Scholar 

  18. Long, R.R.: Solitary waves in the one- and two-fluid systems. Tellus 8, 460–471 (1956)

    Article  Google Scholar 

  19. Benjamin, T.B.: Internal waves of finite amplitude and permanent form. J. Fluid. Mech. 25, 241–270 (1966)

    Article  MATH  Google Scholar 

  20. Benney, D.J.: Long non-linear waves in fluid flows. J. Math. Phys. 45, 52–63 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  21. Benjamin, T.B.: Internal waves of permanent form in fluids of great depth. J. Fluid. Mech. 29, 559–592 (1967)

    Article  MATH  Google Scholar 

  22. Ono, H.: Algebraic Solitary Waves in Stratified Fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Joseph, R.I.: Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen. 10, L225 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kubota, T., Ko, D.R.S., Dobbs, L.D.: Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth. J. Hydronautics. 12, 157–165 (1978)

    Article  Google Scholar 

  25. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk SSSR. 192, 753–756 (1970)

    MATH  Google Scholar 

  26. Tung, K.K., Ko, D.R.S., Chang, J.J.: Weakly Nonlinear Internal Waves in Shear. Stud. Appl. Math. 65, 189–221 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Satsuma, J., Taha, T.R., Ablowitz, M.J.: On a Bäcklund transformation and scattering problem for the modified intermediate long wave equation. J. Math. Phys. 25, 900 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miloh, T.: On periodic and solitary wavelike solutions of the intermediate long-wave equation. J. Fluid. Mech. 211, 617–627 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dodd, R.K.: The symmetry group of the ILW equation and a novel reduction. Phys. Lett. A 235, 31–34 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tutiya, Y., Satsuma, J.: On the ILW hierarchy. Phys. Lett. A 313, 45–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Alejandre, M.P.Á., Kaikina, E.I.: Global existence and asymptotic behavior of solutions to the homogeneous Neumann problem for ILW equation on a half-line. NoDEA-Nonlinear Diff. 19, 459–483 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnpillai, A.G., Kara, A.H., Biswas, A.: Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin-Bona-Mahoney equation. Appl. Math. Lett. 26, 376–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. de la Rosa, R., Gandarias, M.L., Bruzón, M.S.: On symmetries and conservation laws of a Gardner equation involving arbitrary functions. Appl. Math. Comput. 290, 125–134 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Davison, A.H., Kara, A.H.: Potential symmetries and associated conservation laws with application to wave equations. Nonlinear Dynam. 33, 369–377 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Khalique, C.M., Magalakwe, G.: Combined sinh-cosh-Gordon equation: symmetry reductions, exact solutions and conservation laws. Quaest. Math. 37, 199–214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. L\(\ddot{u}\), Z.S., Chen, Y.N.: Construction of rogue wave and lump solutions for nonlinear evolution equations. Eur. Phys. J. B 88 187 (2015)

  37. Conforti, M., Mussot, A., Kudlinski, A., Trillo, S., Akhmediev, N.: Doubly periodic solutions of the focusing nonlinear Schr\(\ddot{o}\)dinger equation: Recurrence, period doubling, and amplification outside the conventional modulation-instability band. Phys. Rev. A 101, 023843 (2020)

    Article  MathSciNet  Google Scholar 

  38. Wang, Y., Chen, Y.: Bäcklund transformations and solutions of a generalized Kadomtsev-Petviashvili equation. Commun. Theor. Phys. 57, 217–222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Minhajul, Zeidan, D., Sekhar, T.R.: On the wave interactions in the drift-flux equations of two-phase flows. Appl. Math. Comput. 327 117–131 (2018)

  40. Adamu, M.Y., Suleiman, E.: Solving boussinesq equation by bilinear bäcklund transformation. Appl. Compput. Math-Bak. 2, 32–35 (2013)

    Article  Google Scholar 

  41. Ma, W.X., Abdeljabbar, A.: Painlevé analysis, Auto-Bäcklund transformation and new exact solutions for improved modied KdV equation. Appl. Math. Lett. 25, 1500–1504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tang, X.Y., Lin, J.: Conditional similarity reductions of Jimbo-Miwa Equation via the classical lie group approach. Commun. Theor. Phys. 39, 6–8 (2003)

    Article  MathSciNet  Google Scholar 

  43. Charalambous, K., Sophocleous, C.: Symmetry analysis for a class of nonlinear dispersive equations. Commun. Nonlinear Sci. Numer. Simul. 22, 1275–1287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yu, D., Zhang, Z.G., Dong, H.H., Yang, H.W.: Bäcklund transformation, infinite number of conservation laws and fission properties of an integro-differential model for ocean internal solitary waves. Commun. Theor. Phys. 73, 035005 (2021)

    Article  Google Scholar 

  45. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Abdusalam, H.A.: On an improved complex tanh-function method. Int. J. Nonlin. Sci. Num. 6, 99–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, T., Li, J., Zhang, H.Q., Zhang, Y.X., Yao, Z.Z., Tian, B.: New extension of the tanh-function method and application to the Whitham-Broer-Kaup shallow water model with symbolic computation. Phys. Lett. A 369, 458–463 (2007)

    Article  Google Scholar 

  48. Zheng, B.: \((G^{\prime }/G)-\)expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ali, A., Seadawy, A.R., Lu, D.C.: New solitary wave solutions of some nonlinear models and their applications. Adv. Differ. Equ-Ny. 2018, 1–12 (2018)

    MATH  Google Scholar 

  50. Seadawy, A.R., Iqbal, M.: Propagation of the nonlinear damped Korteweg-de Vries equation in an unmagnetized collisional dusty plasma via analytical mathematical methods. Math. Method. Appl. Sci. 44, 737–748 (2021)

  51. Zhao, Y.L., Liu, Y.P., Li, Z.B.: A connection between the \((G^{\prime }/G)-\)expansion method and the truncated Painlevé expansion method and its application to the mKdV equation. Chinese Phys. B 19, 030306 (2010)

    Google Scholar 

  52. Liu, S.J., Tang, X.Y., Lou, S.Y.: Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach. Chinese Phys. B 27, 060201 (2018)

    Article  Google Scholar 

  53. Abdou, M.A., Elhanbaly, A.: Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method. Commun. Nonlinear Sci. Numer. Simul. 12, 1229–1241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zayed, E.M.E., Alurrfi, K.A.E.: A new Jacobi elliptic function expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines. Chaos. Soliton. Fract. 78, 148–155 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Fei, J.X., Ma, Z.Y., Chen, Y.M.: Symmetry reduction and explicit solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli system. Appl. Math. Comput. 268, 432–438 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Carpenter, J.R., Lawrence, G.A., Smyth, W.D.: Evolution and mixing of asymmetric Holmboe instabilities. J. Fluid. Mech. 582, 103–132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gardner, C.S., Morikawa, G.K.: The effect of temperature on the width of a small amplitude solitary wave in a collision free plasma. Commun. Pure. Appl. Math. 18, 35–49 (1965)

    Article  MathSciNet  Google Scholar 

  58. Ablowitz, M.J., Demirci, A., Ma, Y.P.: Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations. Phys. D 333, 84–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tsuji, H., Oikawa, M.: Oblique interaction of internal solitary waves in a two-layer fluid of infinite depth Fluid. Dyn. Res. 29, 251–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. Tsuji, H., Oikawa, M.: Two-dimensional interaction of solitary waves in a modiied Kadomtsev-Petviashvili equation. J. Phys. Soc. Jpn. 73, 3034–3043 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was completed with the support of the National Natural Science Foundation of China (Grant No.11975143), the Taishan Scholars Program of Shandong Province (Grant No.ts20190936), and the Shandong University of Science and Technology Research Fund (Grant No.2015TDJH102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Yang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Zhang, Z., Dong, H. et al. A novel dynamic model and the oblique interaction for ocean internal solitary waves. Nonlinear Dyn 108, 491–504 (2022). https://doi.org/10.1007/s11071-022-07201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07201-3

Keywords

Mathematics Subject Classification

Navigation