Skip to main content
Log in

Oceanic internal solitary waves in three-layer fluids of great depth

大深度三层流体中的海洋内孤立波

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

This paper is mainly concerned with modeling nonlinear internal waves in the ocean of great depth. The ocean is assumed to be composed of three homogeneous fluid layers of different densities in a stable stratified configuration. Based on the Ablowitz-Fokas-Musslimani formulation for irrotational flows, strongly nonlinear and weakly nonlinear models are developed for the “shallow-shallow-deep” and “deep-shallow-deep” scenarios. Internal solitary waves are computed using numerical iteration schemes, and their global bifurcation diagrams are obtained by a numerical continuation method and compared for different models. For the “shallow-shallow-deep” case, both mode-1 and mode-2 internal solitary waves can be found, and a pulse broadening phenomenon resulting in conjugate flows is observed in the mode-2 branch. While in the “deep-shallow-deep” situation, only mode-2 solitary waves can be obtained. The existence and stability of mode-2 internal solitary waves are confirmed by solving the primitive equations based on the MITgcm model.

摘要

本文致力于研究深海非线性内波. 将海洋抽象为由三种流体构成的具有稳定密度层结的系统. 基于无旋流动的Ablowitz-Fokas-Musslimani公式, 我们对“浅水-浅水-深水”和“深水-浅水-深水”两种情形建立新的强非线性和弱非线性模型, 并详细比较了不同模型中内孤立波波形及“速度-振幅”的全局分叉图. 对于“浅水-浅水-深水”情形, 可以获得一模态和二模态两种类型的内孤立波, 并且在二模态内波中观察到脉冲展宽现象及其极限形态—共轭流. 然而对于“深水-浅水-深水” 情形, 只能得到二模态内孤立波.基于MITgcm求解原始方程, 我们证实了深海中二模态内波的存在性和稳定性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Perry, and G. R. Schimke, Large-amplitude internal waves observed off the northwest coast of Sumatra, J. Geophys. Res. 70, 2319 (1965).

    Article  Google Scholar 

  2. A. R. Osborne, and T. L. Burch, Internal solitons in the Andaman Sea, Science 208, 451 (1980).

    Article  Google Scholar 

  3. Y. J. Yang, Y. C. Fang, T. Y. Tang, and S. R. Ramp, Convex and concave types of second baroclinic mode internal solitary waves, Nonlin. Processes Geophys. 17, 605 (2010).

    Article  Google Scholar 

  4. W. Choi, and R. Camassa, Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech. 313, 83 (1996).

    Article  MathSciNet  Google Scholar 

  5. W. Choi, and R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech. 396, 1 (1999).

    Article  MathSciNet  Google Scholar 

  6. K. R. Helfrich, and W. K. Melville, Long nonlinear internal waves, Annu. Rev. Fluid Mech. 38, 395 (2006).

    Article  MathSciNet  Google Scholar 

  7. Y. J. Yang, Y. C. Fang, M. H. Chang, S. R. Ramp, C. C. Kao, and T. Y. Tang, Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea, J. Geophys. Res. 114, C10003 (2009).

    Article  Google Scholar 

  8. J. Magalhaes, and J. da Silva, Internal solitary waves in the Andaman Sea: New insights from SAR imagery, Remote Sens. 10, 861 (2018).

    Article  Google Scholar 

  9. S. R. Ramp, Y. J. Yang, D. B. Reeder, and F. L. Bahr, Observations of a mode-2 nonlinear internal wave on the northern Heng-Chun Ridge south of Taiwan, J. Geophys. Res. 117, C03043 (2012).

    Google Scholar 

  10. E. L. Shroyer, J. N. Moum, and J. D. Nash, Mode 2 waves on the continental shelf: ephemeral components of the nonlinear internal wave-field, J. Geophys. Res. 115, C07001 (2010).

    Google Scholar 

  11. M. Carr, P. A. Davies, and R. P. Hoebers, Experiments on the structure and stability of mode-2 internal solitary-like waves propagating on an offset pycnocline, Phys. Fluids 27, 046602 (2015).

    Article  Google Scholar 

  12. M. Carr, M. Stastna, P. A. Davies, and K. J. van de Wal, Shoaling mode-2 internal solitary-like waves, J. Fluid Mech. 879, 604 (2019).

    Article  MathSciNet  Google Scholar 

  13. D. Deepwell, M. Stastna, M. Carr, and P. A. Davies, Interaction of a mode-2 internal solitary wave with narrow isolated topography, Phys. Fluids 29, 076601 (2017).

    Article  Google Scholar 

  14. D. Deepwell, and M. Stastna, Mass transport by mode-2 internal solitary-like waves, Phys. Fluids 28, 056606 (2016).

    Article  Google Scholar 

  15. J. Liang, T. Du, X. Li, and M. He, Generation of mode-2 internal waves in a two-dimensional stratification by a mode-1 internal wave, Wave Motion 83, 227 (2018).

    Article  MathSciNet  Google Scholar 

  16. Z. Liu, R. Grimshaw, and E. Johnson, Generation of mode 2 internal waves by the interaction of mode 1 waves with topography, J. Fluid Mech. 880, 799 (2019).

    Article  MathSciNet  Google Scholar 

  17. Z. Liu, R. Grimshaw, and E. Johnson, Resonant coupling of mode-1 and mode-2 internal waves by topography, J. Fluid Mech. 908, A2 (2021).

    Article  MathSciNet  Google Scholar 

  18. C. Yuan, R. Grimshaw, and E. Johnson, The evolution of second mode internal solitary waves over variable topography, J. Fluid Mech. 836, 238 (2018).

    Article  MathSciNet  Google Scholar 

  19. D. M. Farmer, and J. D. Smith, Tidal interaction of stratified flow with a sill in Knight Inlet, Deep Sea Res. Part A. Oceanogr. Res. Papers 27, 239 (1980).

    Article  Google Scholar 

  20. T. R. Akylas, and R. H. J. Grimshaw, Solitary internal waves with oscillatory tails, J. Fluid Mech. 242, 279 (1992).

    Article  MathSciNet  Google Scholar 

  21. J. M. Vanden-Broeck, and R. E. L. Turner, Long periodic internal waves, Phys. Fluids A-Fluid Dyn. 4, 1929 (1992).

    Article  MathSciNet  Google Scholar 

  22. R. Barros, W. Choi, and P. A. Milewski, Strongly nonlinear effects on internal solitary waves in three-layer flows, J. Fluid Mech. 883, A16 (2020).

    Article  MathSciNet  Google Scholar 

  23. M. J. Ablowitz, A. S. Fokas, and Z. H. Musslimani, On a new non-local formulation of water waves, J. Fluid Mech. 562, 313 (2006).

    Article  MathSciNet  Google Scholar 

  24. T. S. Haut, and M. J. Ablowitz, A reformulation and applications of interfacial fluids with a free surface, J. Fluid Mech. 631, 375 (2009).

    Article  MathSciNet  Google Scholar 

  25. C. Yuan, Z. Wang, and X. Chen, The derivation of an isotropic model for internal waves and its application to wave generation, Ocean Model. 153, 101663 (2020).

    Article  Google Scholar 

  26. H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn. 39, 1082 (1975).

    Article  MathSciNet  Google Scholar 

  27. V. I. Petviashvili, Equation of an extraordinary soliton, Fizika Plazmy 2, 469–472 (1976).

    Google Scholar 

  28. R. E. L. Turner, and J. M. Vanden-Broeck, Broadening of interfacial solitary waves, Phys. Fluids 31, 2486 (1988).

    Article  Google Scholar 

  29. J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res. 102, 5753 (1997).

    Article  Google Scholar 

  30. C. Yuan, R. Grimshaw, E. Johnson, and X. Chen, The propagation of internal solitary waves over variable topography in a horizontally two-dimensional framework, J. Phys. Oceanogr. 48, 283 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Wang  (王展).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11911530171, 11772341, and 42006016), the Key Program of National Natural Science Foundation of China (Grant Nos. 12132018, and 91958206), and the Natural Science Foundation of Shandong Province (Grant No. ZR2020QD063).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, Z. & Yuan, C. Oceanic internal solitary waves in three-layer fluids of great depth. Acta Mech. Sin. 38, 321473 (2022). https://doi.org/10.1007/s10409-021-09012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09012-x

Navigation