Skip to main content
Log in

Fixed-time trajectory tracking control for nonholonomic mobile robot based on visual servoing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper aims to discuss fixed-time tracking control problem for a nonholonomic wheeled mobile robot based on visual servoing. At first, by making use of the pinhole camera model, the robot system model with uncalibrated camera parameters is given. Then, the tracking error system between the mobile robot and desired trajectory is proposed. Thirdly, on the basis of fixed-time control theory and Lyapunov stability analysis, fixed-time tracking control laws are proposed for the mobile robot such that the robot can track the reference trajectory in a fixed time. It is well known that the convergence time for the finite-time control systems is usually dependent on the initial state of the system. However, the settling time obtained by the fixed-time control is independent of the system initial conditions and only determined by the controller parameters, which is more in line with practical application. Simulation results are given at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Shi, H., Li, X., Hwang, K., Wei, P., Xu, G.: Decoupled visual servoing with fuzzy Q-learning. IEEE Trans. Industr. Inf. 14(1), 241–252 (2016)

    Article  Google Scholar 

  2. Djelal, N., Saadia, N., Ramdane-Cherif, A.: Target tracking based on SURF and image-based visual servoing, In: Proceeding of the 2th IEEE international conference on communications, computing and control applications, Marseilles, France, pp. 1-5 (2013)

  3. Chang, X., Jing, Y., Gao, X., Liu, X.: \(H\infty \) tracking control design of T-S fuzzy systems. Control Dec. 23(3), 329–332 (2008)

    MathSciNet  Google Scholar 

  4. Pan, W., Lyu, M., Hwang, K., Ju, M., Shi, H.: A neuro-fuzzy visual servoing controller for an articulated manipulator. IEEE Access. 6(99), 3346–3357 (2018)

    Article  Google Scholar 

  5. Kim, S., Oh, S.: Hybrid position and image based visual servoing for mobile robots. J. Intell. Fuzzy Syst. 18(1), 73–82 (2007)

    MATH  Google Scholar 

  6. Ghasemi, A., Li, P., Xie, W.: Adaptive switch image-based visual servoing for industrial robots. Int. J. Control Autom. Syst. 18(5), 1324–1334 (2020)

    Article  Google Scholar 

  7. Zhang, X., Fang, Y., Liu, X.: Motion estimation based visual servoing of nonholonomic mobile robots. IEEE Trans. Rob. 27(6), 1167–1175 (2011)

    Article  Google Scholar 

  8. Fang, Y., Liu, X., Zhang, X.: Adaptive active visual servoing of nonholonomic mobile robots. IEEE Trans. Ind. Electron. 59(1), 486–497 (2012)

    Article  Google Scholar 

  9. Wang, H., Liu, Y., Zhou, D.: Dynamic visual tracking for manipulators using an uncalibrated fixed camera. IEEE Trans. Rob. 23(3), 610–617 (2007)

    Article  Google Scholar 

  10. Guo, P., Liang, Z., Wang, X., Zheng, M.: Adaptive trajectory tracking of wheeled mobile robot based on fixed-time convergence with uncalibrated camera parameters. ISA Trans. 99, 1–8 (2020)

    Article  Google Scholar 

  11. Chen, J., Dixon, W., Dawson, D., Mclntyre, M.: Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Trans. Rob. 22(2), 407–416 (2006)

    Google Scholar 

  12. Yang, F., Wang, C., Jing, G.: Adaptive tracking control for dynamic nonholonomic mobile robots with uncalibrated visual parameters. Int. J. Adapt. Control Signal Process. 27(8), 688–700 (2013)

    Article  MathSciNet  Google Scholar 

  13. Liang, X., Wang, H., Chen, W., Guo, D.: Adaptive image-based trajectory tracking control of wheeled mobile robots with an uncalibrated fixed camera. IEEE Trans. Control Syst. Technol. 23(6), 2266–2282 (2015)

    Article  Google Scholar 

  14. Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  15. Sun, H., Hou, L., Zong, G.: Continuous finite time control for static var compensator with mismatched disturbances. Nonlinear Dyn. 85, 2159–2169 (2016)

    Article  Google Scholar 

  16. Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

    Article  MathSciNet  Google Scholar 

  17. Bhat, S., Bernstein, D.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  Google Scholar 

  18. Li, Z., Chang, X., Park, J.: Quantized static output feedback fuzzy tracking control for discrete-time nonlinear networked systems with asynchronous event-triggered constraints. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3820–3831 (2021)

    Article  Google Scholar 

  19. Mei, K., Ding, S.: HOSM controller design with asymmetric output constraints. Sci. China Inf. Sci. 65(8), 189202 (2022)

    Article  MathSciNet  Google Scholar 

  20. Xiong, J., Zhang, G.: Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans. 66, 1233–1240 (2017)

    Article  Google Scholar 

  21. Wu, Y., Wang, B., Zong, G.: Finite time tracking controller design for nonholonomic systems with extended chained form. IEEE Trans. Circuits Syst. II Exp. Briefs 52(11), 798–802 (2005)

    Article  Google Scholar 

  22. Ou, M., Sun, H., Gu, S., Zhang, Y.: Distributed finite-time trajectory tracking control for multiple nonholonomic mobile robots with uncertainties and external disturbances. Int. J. Syst. Sci. 48(15), 3233–3245 (2017)

    Article  MathSciNet  Google Scholar 

  23. Ou, M., Li, S., Wang, C.: Finite-time tracking control for a nonholonomic mobile robot based on visual servoing. Asian J. Control 16(3), 679–691 (2014)

    Article  MathSciNet  Google Scholar 

  24. Zhou, Z., Tang, G., Xu, R., Han, L., Cheng, M.: A novel continuous nonsingular finite-time control for underwater robot manipulators. J. Mar. Environ. Eng. 9(3), 1–18 (2021)

    Google Scholar 

  25. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  Google Scholar 

  26. Levant, A.: On fixed and finite time stability in sliding mode control. In: Proceeding of the 52nd IEEE annual conference on decision and control, Florence Italy, pp. 4260–4265 (2013)

  27. Li, J., Yang, Y., Hua, C., Guan, X.: Fixed-time backstepping control design for high-order strict-feedback nonlinear systems via terminal sliding mode. IET Control Theory Appl. 11(8), 1184–1193 (2016)

    Article  Google Scholar 

  28. Huang, Y., Jia, Y.: Fixed-time consensus tracking control of second-order multi-agent systems with inherent nonlinear dynamics via output feedback. Nonlinear Dyn. 91, 1289–1306 (2018)

    Article  Google Scholar 

  29. Zhang, L., Wei, C., Jing, L., Cui, N.: Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances. Nonlinear Dyn. 93, 2543–2563 (2018)

    Article  Google Scholar 

  30. Zuo, Z.: Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl. 9(4), 545–552 (2015)

    Article  MathSciNet  Google Scholar 

  31. Huang, W., Yang, Y., Hua, C.: Fixed-time tracking control approach design for nonholonomic mobile robot. In: Proceeding of the 35th Chinese control conference, Chengdu, China, pp. 3423–3428 (2016)

  32. Ou, M., Sun, H., Zhang, Z., Li, L., Wang, X.: Fixed-time tracking control for nonholonomic mobile robot. Kybernetika 57(2), 220–235 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Ou, M., Sun, H., Zhang, Z., Li, L.: Fixed-time trajectory tracking control for multiple nonholonomic mobile robots. Trans. Inst. Meas. Control. 43(7), 1596–1608 (2021)

    Article  Google Scholar 

  34. Hardy, G., Littlewood, J., Polya, G.: Inequalities[M]. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  35. Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87(2), 363–370 (2014)

    Article  MathSciNet  Google Scholar 

  36. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  Google Scholar 

  37. Campion, G., Bastin, G., D’Andrea-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)

  38. Dixon, W., Dawson, D., Zergeroglu, E., Behal, A.: Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system. IEEE Trans. Syst. Man Cybern. B Cybern. 31(3), 341–352 (2001)

    Article  Google Scholar 

  39. Yang, F., Wang, C.: Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual servoing feedback. Acta Autom. Sin. 7(7), 857 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proceedings of the IEEE international conference on robotics and automation, Cincinnati, OH, USA, pp. 384–389 (1990)

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Anhui Province (1908085MF219), Natural Science Foundation of the Anhui Higher Education Institutions(KJ2020A0710), Natural Science Foundation of Shandong Province (ZR2020Y-Q48), Postdoctoral Science Foundation of China(2017M621590) and the Open Project Program of Ministry of Education Key Laboratory of Measurement and Control of CSE(MCCSE2018-B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Ou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, M., Sun, H., Zhang, Z. et al. Fixed-time trajectory tracking control for nonholonomic mobile robot based on visual servoing. Nonlinear Dyn 108, 251–263 (2022). https://doi.org/10.1007/s11071-021-07191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07191-8

Keywords

Navigation