Skip to main content
Log in

Wave propagation in nonlinear monoatomic chains with linear and quadratic damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Due to the substantial role of damping in the performance of real-life structures, many researchers are interested in analyzing its various effects on the dynamic behavior of systems. In this work, a theoretical investigation is performed on the wave propagation in monoatomic nonlinear chains in the presence of energy dissipation. Both linear and quadratic damping models are considered and the time-dependent dispersion relations for the weakly nonlinear monoatomic chains are obtained using the multiple-scale method. Also, a numerical simulation is carried out to verify the results obtained by the analytical formulations. In addition to the comparison of the dispersion relations for chains with hardening and softening nonlinearities, their wave-filtering performances in the presence of linear and quadratic damping are compared. According to the results, increasing the damping ratio in chains with hardening nonlinearity leads to lower dispersion branches compared to their linear counterparts. On the other hand, in systems with softening nonlinearity, higher dispersion branches than the linear chains are achieved by increasing the damping ratio. The results of this work bring us one step closer to modeling the real behavior of nonlinear phononic crystals and lattice materials to have a better perception of their extraordinary dynamic capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Yao, L., Huang, G., Chen, H., Barnhart, M.V.: A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals. Acta Mech. 230, 2279–2293 (2019). https://doi.org/10.1007/s00707-019-02396-w

    Article  MathSciNet  Google Scholar 

  2. Ma, T.X., Su, X.X., Wang, Y.S., Wang, Y.F.: Effects of material parameters on elastic band gaps of three-dimensional solid phononic crystals. Phys. Scr. 87, 055604 (2013). https://doi.org/10.1088/0031-8949/87/05/055604

    Article  Google Scholar 

  3. Sugino, C., Ruzzene, M., Erturk, A.: An analytical framework for locally resonant piezoelectric metamaterial plates. Int. J. Solids Struct. 182–183, 281–294 (2020). https://doi.org/10.1016/j.ijsolstr.2019.08.011

    Article  Google Scholar 

  4. Peri, V., Song, Z., Serra-Garcia, M., Engeler, P., Queiroz, R., Huang, X., Deng, W., Liu, Z., Bernevig, B.A., Huber, S.D.: Experimental characterization of fragile topology in an acoustic metamaterial. Science 367, 797–800 (2020). https://doi.org/10.1126/science.aaz7654

    Article  Google Scholar 

  5. Zhang, K., Zhao, P., Zhao, C., Hong, F., Deng, Z.: Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices. Compos. Struct. 238, 111952 (2020). https://doi.org/10.1016/j.compstruct.2020.111952

    Article  Google Scholar 

  6. Sugino, C., Leadenham, S., Ruzzene, M., Erturk, A.: On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. J. Appl. Phys. 120, 1–7 (2016). https://doi.org/10.1063/1.4963648

    Article  Google Scholar 

  7. Qi, D., Yu, H., Hu, W., He, C., Wu, W., Ma, Y.: Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extrem. Mech. Lett. 28, 58–68 (2019). https://doi.org/10.1016/j.eml.2019.02.005

    Article  Google Scholar 

  8. Krushynska, A.O., Miniaci, M., Bosia, F., Pugno, N.M.: Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials. Extrem. Mech. Lett. 12, 30–36 (2017). https://doi.org/10.1016/j.eml.2016.10.004

    Article  Google Scholar 

  9. Bacigalupo, A., De Bellis, M.L., Gnecco, G.: Complex frequency band structure of periodic thermo-diffusive materials by Floquet-Bloch theory. Acta Mech. 230, 3339–3363 (2019). https://doi.org/10.1007/s00707-019-02416-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat. Commun. 8, 1–11 (2017). https://doi.org/10.1038/s41467-017-00671-9

    Article  Google Scholar 

  11. Xu, X., Barnhart, M.V., Li, X., Chen, Y., Huang, G.: Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J. Sound Vib. 442, 237–248 (2019). https://doi.org/10.1016/j.jsv.2018.10.065

    Article  Google Scholar 

  12. An, X., Lai, C., Fan, H., Zhang, C.: 3D acoustic metamaterial-based mechanical metalattice structures for low-frequency and broadband vibration attenuation. Int. J. Solids Struct. 191–192, 293–306 (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.020

    Article  Google Scholar 

  13. Chen, X., Ji, Q., Wei, J., Tan, H., Yu, J., Zhang, P., Laude, V., Kadic, M.: Light-weight shell-lattice metamaterials for mechanical shock absorption. Int. J. Mech. Sci. 169, 105288 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105288

    Article  Google Scholar 

  14. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 1–38 (2014). https://doi.org/10.1115/1.4026911

    Article  Google Scholar 

  15. Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. Trans. ASME. 132, 0310011–03100111 (2010). https://doi.org/10.1115/1.4000775

    Article  Google Scholar 

  16. Liang, B., Yuan, B., Cheng, J.C.: Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.104301

    Article  Google Scholar 

  17. Sheng, P., Fang, X., Wen, J., Yu, D.: Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. J. Sound Vib. 492, 115739 (2021). https://doi.org/10.1016/j.jsv.2020.115739

    Article  Google Scholar 

  18. Bae, M.H., Oh, J.H.: Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials. J. Mech. Phys. Solids. 139, 103930 (2020). https://doi.org/10.1016/j.jmps.2020.103930

    Article  MathSciNet  Google Scholar 

  19. Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63, 193–203 (2011). https://doi.org/10.1007/s11071-010-9796-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Bukhari, M., Barry, O.: Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dyn. 99, 1539–1560 (2020). https://doi.org/10.1007/s11071-019-05373-z

    Article  Google Scholar 

  21. Fronk, M.D., Leamy, M.J.: Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Phys. Rev. E. 100, 32213 (2019). https://doi.org/10.1103/PhysRevE.100.032213

    Article  Google Scholar 

  22. Wang, K., Zhou, J., Xu, D., Ouyang, H.: Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mech. Syst. Signal Process. 124, 664–678 (2019). https://doi.org/10.1016/j.ymssp.2019.02.008

    Article  Google Scholar 

  23. El-Borgi, S., Fernandes, R., Rajendran, P., Yazbeck, R., Boyd, J.G., Lagoudas, D.C.: Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments. J. Sound Vib. 488, 115647 (2020). https://doi.org/10.1016/j.jsv.2020.115647

    Article  Google Scholar 

  24. Farzbod, F., Leamy, M.J.: Analysis of bloch’s method in structures with energy dissipation. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). pp. 401–408. ASMEDC (2010)

  25. Farzbod, F., Leamy, M.J.: Analysis of Bloch’s method in structures with energy dissipation. J. Vib. Acoust. Trans. ASME. 133, 051010 (2011). https://doi.org/10.1115/1.4003943

    Article  Google Scholar 

  26. Andreassen, E., Jensen, J.S.: Analysis of phononic bandgap structures with dissipation. J. Vib. Acoust. Trans. ASME. 135, 1–8 (2013). https://doi.org/10.1115/1.4023901

    Article  Google Scholar 

  27. Van Belle, L., Claeys, C., Deckers, E., Desmet, W.: On the impact of damping on the dispersion curves of a locally resonant metamaterial: Modelling and experimental validation. J. Sound Vib. 409, 1–23 (2017). https://doi.org/10.1016/j.jsv.2017.07.045

    Article  Google Scholar 

  28. Hussein, M.I., Frazier, M.J.: Band structure of phononic crystals with general damping. J. Appl. Phys. 108, (2010). https://doi.org/10.1063/1.3498806

  29. Krattiger, D., Khajehtourian, R., Bacquet, C.L., Hussein, M.I.: Anisotropic dissipation in lattice metamaterials. AIP Adv. 6, (2016). https://doi.org/10.1063/1.4973590

  30. Wang, C., Xiao, W., Wu, D., Wang, S., Lin, C., Luo, Y., Xiao, J., Yao, K., Xu, Z.: Study on bandgap characteristics of particle damping phononic crystal. Appl. Acoust. 166, 107352 (2020). https://doi.org/10.1016/j.apacoust.2020.107352

    Article  Google Scholar 

  31. Chen, Y.Y., Barnhart, M.V., Chen, J.K., Hu, G.K., Sun, C.T., Huang, G.L.: Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Compos. Struct. 136, 358–371 (2016). https://doi.org/10.1016/j.compstruct.2015.09.048

    Article  Google Scholar 

  32. Barnhart, M.V., Xu, X., Chen, Y., Zhang, S., Song, J., Huang, G.: Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation. J. Sound Vib. 438, 1–12 (2019). https://doi.org/10.1016/j.jsv.2018.08.035

    Article  Google Scholar 

  33. Hussein, M.I., Frazier, M.J.: Metadamping: An emergent phenomenon in dissipative metamaterials. J. Sound Vib. 332, 4767–4774 (2013). https://doi.org/10.1016/j.jsv.2013.04.041

    Article  Google Scholar 

  34. Khajehtourian, R., Kochmann, D.M.: Phase transformations in substrate-free dissipative multistable metamaterials. Extrem. Mech. Lett. 37, 100700 (2020). https://doi.org/10.1016/j.eml.2020.100700

    Article  Google Scholar 

  35. Xu, X., Barnhart, M.V., Fang, X., Wen, J., Chen, Y., Huang, G.: A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int. J. Mech. Sci. 164, 105159 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105159

    Article  Google Scholar 

  36. Ravindra, B., Mallik, A.K.: Role of nonlinear dissipation in soft Duffing oscillators, (1994)

  37. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67, 859–883 (2012). https://doi.org/10.1007/s11071-011-0031-5

    Article  MATH  Google Scholar 

  38. Ozcelik, O., Attar, P.J.: Nonlinear response of flapping beams to resonant excitations under nonlinear damping. Acta Mech. 226, 4281–4307 (2015). https://doi.org/10.1007/s00707-015-1453-9

    Article  MathSciNet  MATH  Google Scholar 

  39. Fay, T.H.: Quadratic damping. Int. J. Math. Educ. Sci. Technol. 43, 789–803 (2012). https://doi.org/10.1080/0020739X.2011.622806

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee, M., Davidovikj, D., Sajadi, B., Šiškins, M., Alijani, F., van der Zant, H.S.J., Steeneken, P.G.: Sealing Graphene Nanodrums. Nano Lett. 19, 5313–5318 (2019). https://doi.org/10.1021/acs.nanolett.9b01770

    Article  Google Scholar 

  41. Trueba, J.L., Rams, J., Sanjuán, M.A.F.: Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators. Int. J. Bifurcat. Chaos. 10, 2257–2267 (2000). https://doi.org/10.1142/S0218127400001419

    Article  MathSciNet  MATH  Google Scholar 

  42. Krauss, R.W., Nayfeh, A.H.: Experimental Nonlinear Identification of a Single Mode of a Transversely Excited Beam. Nonlinear Dyn. 18, 69–87 (1999). https://doi.org/10.1023/A:1008355929526

    Article  MATH  Google Scholar 

  43. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley (1995)

  44. Yin, J., Ruzzene, M., Wen, J., Yu, D., Cai, L., Yue, L.: Band transition and topological interface modes in 1D elastic phononic crystals. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-24952-5

    Article  Google Scholar 

  45. Fronk, M.D., Leamy, M.J.: Higher-Order Dispersion, Stability, and Waveform Invariance in Nonlinear Monoatomic and Diatomic Systems. J. Vib. Acoust. Trans. ASME. 139, 1–13 (2017). https://doi.org/10.1115/1.4036501

    Article  Google Scholar 

  46. Sridhar, S., Nayfeh, A.H., Mook, D.T.: Nonlinear resonances in a class of multi-degree-of-freedom systems. J. Acoust. Soc. Am. 58, 113–123 (1975). https://doi.org/10.1121/1.380639

    Article  MATH  Google Scholar 

  47. Nayfeh, A.H.: Perturbation Methods. Wiley (2000)

  48. Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Weakly nonlinear wave interactions in multi-degree of freedom periodic structures. Wave Motion 51, 886–904 (2014). https://doi.org/10.1016/j.wavemoti.2014.03.003

    Article  MathSciNet  MATH  Google Scholar 

  49. Narisetti, R.K., Ruzzene, M., Leamy, M.J.: Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach. Wave Motion 49, 394–410 (2012). https://doi.org/10.1016/j.wavemoti.2011.12.005

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, Y.Z., Li, F.M., Wang, Y.S.: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int. J. Mech. Sci. 106, 357–362 (2016). https://doi.org/10.1016/j.ijmecsci.2015.12.004

    Article  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Masoud Seyyed Fakhrabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The three terms on the right-hand side of Eq. (6) can be expanded in the following forms:

$$ \begin{gathered} 2D_{0} D_{1} u_{n}^{\left( 0 \right)} = i\omega_{0} D_{1} A\left( {T_{1} } \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} - i\omega_{0} D_{1} \overline{A}\left( {T_{1} } \right)e^{{ - i\omega_{0} T_{0} }} e^{ - i\kappa nd} \hfill \\ = i\omega_{0} D_{1} A\left( {T_{1} } \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} + c.c., \hfill \\ \end{gathered} $$
(42)
$$ \begin{gathered} \alpha \left( {u_{n}^{\left( 0 \right)} - u_{n - 1}^{\left( 0 \right)} } \right)^{3} + \alpha \left( {u_{n}^{\left( 0 \right)} - u_{n + 1}^{\left( 0 \right)} } \right)^{3} \hfill \\ = \alpha \left\{ {\left[ {\frac{A}{2}\left( {1 - e^{ - i\kappa d} } \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} + \frac{{\overline{A}}}{2}\left( {1 - e^{i\kappa d} } \right)e^{{ - i\omega_{0} T_{0} }} e^{ - i\kappa nd} } \right]^{3} } \right. \hfill \\ \left. { + \left[ {\frac{A}{2}\left( {1 - e^{i\kappa d} } \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} + \frac{{\overline{A}}}{2}\left( {1 - e^{ - i\kappa d} } \right)e^{{ - i\omega_{0} T_{0} }} e^{ - i\kappa nd} } \right]^{3} } \right\} \hfill \\ = \frac{3}{8}\alpha A^{2} \overline{A}\left( {6 - 4e^{i\kappa d} - 4e^{ - i\kappa d} + e^{ - 2i\kappa d} + e^{2i\kappa d} } \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} \hfill \\ + \frac{{A^{3} }}{8}\left( {1 - 3e^{ - \kappa d} + 3e^{ - 2\kappa d} - e^{ - 3i\kappa d} } \right) + c.c. \hfill \\ = \frac{3}{8}\alpha A^{2} \overline{A}\left( {6 - 8\cos \kappa d + 2\cos 2\kappa d} \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} \hfill \\ + \frac{{A^{3} }}{8}\left( {1 - 3e^{ - \kappa d} + 3e^{ - 2\kappa d} - e^{ - 3i\kappa d} } \right)e^{{3i\omega_{0} T_{0} }} e^{3i\kappa nd} + c.c., \hfill \\ \end{gathered} $$
(43)
$$ \begin{gathered} \mu_{l} D_{0} \left( {2u_{n}^{\left( 0 \right)} - u_{n - 1}^{\left( 0 \right)} - u_{n + 1}^{\left( 0 \right)} } \right) = \mu_{l} i\omega_{0} \left[ {\begin{array}{*{20}c} {\frac{A}{2}\left( {2 - e^{ - i\kappa d} - e^{i\kappa d} } \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} } \\ { + \overline{\frac{A}{2}} \left( {2 - e^{ - i\kappa d} - e^{i\kappa d} } \right)e^{{ - i\omega_{0} T_{0} }} e^{ - i\kappa nd} } \\ \end{array} } \right] \hfill \\ = \frac{{\mu_{l} i\omega_{0} A}}{2}\left( {2 - e^{ - i\kappa d} - e^{i\kappa d} } \right)e^{{i\omega_{0} T_{0} }} e^{i\kappa nd} + c.c. . \hfill \\ \end{gathered} $$
(44)

Appendix 2

The governing equation of the quadratically damped phononic crystal of Fig. 1 is as follows:

$$ \begin{gathered} m\frac{{\partial^{2} u_{n} }}{{\partial t^{2} }} + k\left( {2u_{n} - u_{n - 1} - u_{n + 1} } \right) + \varepsilon \tilde{\alpha }\left( {u_{n} - u_{n - 1} } \right)^{3} + \varepsilon \tilde{\alpha }\left( {u_{n} - u_{n + 1} } \right)^{3} \hfill \\ + \varepsilon c_{quad} \left\{ {\left( {\frac{{\partial u_{n} }}{\partial t} - \frac{{\partial u_{n - 1} }}{\partial t}} \right)\left| {\frac{{\partial u_{n} }}{\partial t} - \frac{{\partial u_{n - 1} }}{\partial t}} \right|} \right\} \hfill \\ + \varepsilon c_{quad} \left\{ {\left( {\frac{{\partial u_{n} }}{\partial t} - \frac{{\partial u_{n + 1} }}{\partial t}} \right)\left| {\frac{{\partial u_{n} }}{\partial t} - \frac{{\partial u_{n + 1} }}{\partial t}} \right|} \right\} = 0. \hfill \\ \end{gathered} $$
(45)

Introducing nondimensional time \(\tau = \omega_{nat} t\), the governing equation can be expressed as

$$ \begin{gathered} \ddot{u}_{n} + \left( {2u_{n} - u_{n - 1} - u_{n + 1} } \right) + \varepsilon \alpha \left( {u_{n} - u_{n - 1} } \right)^{3} + \varepsilon \alpha \left( {u_{n} - u_{n + 1} } \right)^{3} \hfill \\ + \varepsilon \mu_{quad} \left\{ {\left( {\dot{u}_{n} - \dot{u}_{n - 1} } \right)\left| {\dot{u}_{n} - \dot{u}_{n - 1} } \right| + \left( {\dot{u}_{n} - \dot{u}_{n + 1} } \right)\left| {\dot{u}_{n} - \dot{u}_{n + 1} } \right|} \right\} = 0, \hfill \\ \end{gathered} $$
(46)

where \(= \frac{{\tilde{\alpha }}}{k}\) \(\mu_{quad} = \frac{{c_{q} \omega_{nat}^{2} }}{k} = \frac{{c_{q} }}{m}\).

Appendix 3

Starting from Eq. (23), the term \({f}_{d}\) can be expressed as:

$$ f_{d} = \mu_{q} \dot{u}_{n}^{\left( 0 \right)} \left| {\dot{u}_{n}^{\left( 0 \right)} } \right|\left[ {\left( {1 - e^{ - i\kappa d} } \right)\left| {1 - e^{ - i\kappa d} } \right| + \left( {1 - e^{i\kappa d} } \right)\left| {1 - e^{i\kappa d} } \right|} \right] = \mu_{q} P\dot{u}_{n}^{\left( 0 \right)} \left| {\dot{u}_{n}^{\left( 0 \right)} } \right|, $$
(47)

where

$$ P = \left( {1 - e^{ - i\kappa d} } \right)\left| {1 - \left( {\cos \kappa d - i\sin \kappa d} \right)} \right| + \left( {1 - e^{i\kappa d} } \right)\left| {1 - \left( {\cos \kappa d + i\sin \kappa d} \right)} \right|. $$
(48)

Considering the absolute values of the complex terms in Eq. (48), we can write:

$$ \begin{gathered} \left| {1 - \left( {\cos \kappa d - i\sin \kappa d} \right)} \right| = \left| {1 - \left( {\cos \kappa d + i\sin \kappa d} \right)} \right| = \hfill \\ \sqrt {\left( {1 - \cos \kappa d} \right)^{2} + \sin^{2} \kappa d} = \sqrt {2 - 2\cos \kappa d} . \hfill \\ \end{gathered} $$
(49)

Substituting from Eq. (49) in Eq. (48), the following expression for \(f_{d}\) can be obtained:

$$ \begin{gathered} \mu_{q} \dot{u}_{n}^{\left( 0 \right)} \left| {\dot{u}_{n}^{\left( 0 \right)} } \right|\left[ {\left( {1 - e^{ - i\kappa d} } \right)\sqrt {2 - 2\cos \kappa d} + \left( {1 - e^{i\kappa d} } \right)\sqrt {2 - 2\cos \kappa d} } \right] \hfill \\ = \mu_{q} \dot{u}_{n}^{\left( 0 \right)} \left| {\dot{u}_{n}^{\left( 0 \right)} } \right|\sqrt {2 - 2\cos \kappa d} \left( {2 - 2\cos \kappa d} \right) = \mu_{q} \left( {2 - 2\cos \kappa d} \right)^{\frac{3}{2}} { }\dot{u}_{n}^{\left( 0 \right)} \left| {\dot{u}_{n}^{\left( 0 \right)} } \right| \hfill \\ \end{gathered} $$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepehri, S., Mashhadi, M.M. & Fakhrabadi, M.M.S. Wave propagation in nonlinear monoatomic chains with linear and quadratic damping. Nonlinear Dyn 108, 457–478 (2022). https://doi.org/10.1007/s11071-021-07184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07184-7

Keywords

Navigation