Skip to main content
Log in

N-Fold generalized Darboux transformation and semirational solutions for the Gerdjikov-Ivanov equation for the Alfvén waves in a plasma

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Alfvén waves propagating parallel to the ambient magnetic field are modeled via the Gerdjikov-Ivanov equation. With respect to the transverse magnetic field perturbation for such an equation, we derive an N-fold generalized Darboux transformation and some semirational solutions on the constant/periodic background, where N is a positive integer. Such semirational solutions consist of the l-th-order rogue waves, the \(\left( \kappa -l-r\right) \)-th-order nondegenerate breathers and the r-th-order degenerate breathers, where \(\kappa =2,3,\ldots ,N\), \(l=0,1,2,\ldots ,\kappa -1\), and \(r=0,2,3,\ldots ,\kappa \). With some conditions, the l-th-order rogue wave is close to the \(\frac{1}{2}(\kappa -l)(\kappa +l+1)\) elements of the \(\left( \kappa -l\right) \)-th-order breathers which locate in the center of the \(x\) \(-\) \(t\) plane, and then the interaction among them forms the \(\kappa \)-th-order rogue wave, where x and t denote the space and time coordinates, respectively. Through the asymptotic analysis, we find that the trajectories of the second-order degenerate breathers are the logarithmic curves, and the asymptotic breathers are in good coherence with the corresponding analytic solutions in the far-field region of the xt plane. Interaction between the second-order nondegenerate breathers and the first-order rogue wave reveals the periodic attraction and repulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Notes

  1. Solutions corresponding to the same spectral parameter have been called degenerate solutions, while the solutions corresponding to the different spectral parameters have been called nondegenerate solutions [26, 27].

  2. Different from the N-fold GDT in Ref. [37] which can iterate k times under the same spectral parameter, N-fold GDT for Eq. (1), to be done in this paper, can iterate \(m_k\) times under each of the k different spectral parameters, where \(k=1,2,\ldots ,n\), n and \(m_k\)’s are the positive integers, and \(\sum \limits _{k=1}^{n}m_k=N\).

  3. We can analyze characteristics of the three types of the third-order semirational solutions on the periodic background in the similar way.

Abbreviations

\({\mathbb {C}}\), \({\mathbb {R}}\) and \({\mathbb {I}}\) :

Sets of complex, real and pure imaginary numbers, respectively

Re and Im :

Corresponding real and imaginary parts of a complex scalar, respectively

\(\delta _k^b\) :

Kronecker delta function, i.e., \(\delta _k^b={\left\{ \begin{array}{ll} 0,&{}k\ne b\\ 1, &{}k=b \end{array}\right. }\)

\(*\) :

Complex conjugate

T:

Vector transpose

\(\det \) :

Determinant of a matrix

References

  1. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

  2. Wazwaz, A.M.: Painlevé analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions. Phys. Lett. A 384(16), 126310 (2020)

    Article  MathSciNet  Google Scholar 

  3. Wazwaz, A.M.: Two new Painlevé integrable KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation. Nonlinear Dyn. 104, 4311–4315 (2021)

    Article  Google Scholar 

  4. Wang, D., Gao, Y.T., Yu, X., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Nonlinear Dyn. 104, 1519–1531 (2021)

    Article  Google Scholar 

  5. Gao, X.Y., Guo, Y.J., Shan, W.R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrodinger system. Appl. Math. Lett. 120, 107161 (2021)

    Article  MathSciNet  Google Scholar 

  6. Chen, S.S., Tian, B., Qu, Q.X., Li, H., Sun, Y., Du, X.X.: Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrodinger equation in an inhomogeneous plasma. Chaos Solitons Fract. 148, 111029 (2021)

    Article  Google Scholar 

  7. Abdikian, A.: Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma. Phys. Plasmas 25(2), 022308 (2018)

    Article  Google Scholar 

  8. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers and lumps of a \((3+ 1)\)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135(3), 272 (2020)

    Article  Google Scholar 

  9. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100, 3771–3784 (2020)

    Article  Google Scholar 

  10. Deng, G.F., Gao, Y.T., Ding, C.C., Su, J.J.: Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fract. 140, 110085 (2020)

  11. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Liu, F.Y., Jia, T.T.: Darboux transformation, bright and dark-bright solitons of an N-coupled high-order nonlinear Schrödinger system in an optical fiber. Mod. Phys. Lett. B (2022) in press, Ms. No. MPLB-D-21-00411

  12. Ding, C.C., Gao, Y.T., Deng, G.F., Wang, D.: Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fract. 133, 109580 (2020)

  13. Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85(2), 026607 (2012)

    Article  Google Scholar 

  14. Gao, X.Y., Guo, Y.J., Shan, W.R., Yin, H.M., Du, X.X., Yang, D.Y.: Electromagnetic waves in a ferromagnetic film. Commun. Nonlinear Sci. Numer. Simul. 105, 106066 (2022)

    Article  MathSciNet  Google Scholar 

  15. Zhang, G., Yan, Z.: Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Phys. D 402, 132170 (2020)

    Article  MathSciNet  Google Scholar 

  16. Liu, F.Y., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C., Wang, D.: Lie group analysis and analytic solutions for a \((2+ 1)\)-dimensional generalized Bogoyavlensky-Konopelchenko equation in fluid mechanics and plasma physics. Eur. Phys. J. Plus 136, 656 (2021)

    Article  Google Scholar 

  17. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Deng, G.F., Jia, T.T.: Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics. Chaos Solitons Fract. 144, 110559 (2021)

  18. Hu, L., Gao, Y.T., Jia, S.L., Su, J.J., Deng, G.F.: Solitons for the \((2+1)\)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod. Phys. Lett. B 33(30), 1950376 (2019)

    Article  MathSciNet  Google Scholar 

  19. Hu, L., Gao, Y.T., Jia, T.T., Deng, G.F., Li, L.Q.: Higher-order hybrid waves for the \((2+1)\)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique. Z. Angew. Math. Phys. 72, 75 (2021)

    Article  MathSciNet  Google Scholar 

  20. Li, L.Q., Gao, Y.T., Hu, L., Jia, T.T., Ding, C.C., Feng, Y.J.: Bilinear form, soliton, breather, lump and hybrid solutions for a \((2+ 1)\)-dimensional Sawada-Kotera equation. Nonlinear Dyn. 100(3), 2729–2738 (2020)

    Article  Google Scholar 

  21. Wang, D., Gao, Y.T., Ding, C.C., Zhang, C.Y.: Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. Commun. Theor. Phys. 72, 115004 (2020)

    Article  MathSciNet  Google Scholar 

  22. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous matter-wave solitons near the Feshbach resonance. Phys. Rev. A 81(2), 023610 (2010)

    Article  Google Scholar 

  23. Wang, L., Zhu, Y.J., Wang, Z.Z., Qi, F.H., Guo, R.: Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 33, 218–228 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized \((3+1)\)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves. Nonlinear Dyn. 97(4), 2023–2040 (2019)

    Article  Google Scholar 

  25. Meng, G.Q.: High-order semi-rational solutions for the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling. Appl. Math. Lett. 105, 106343 (2020)

    Article  MathSciNet  Google Scholar 

  26. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85(6), 066601 (2012)

    Article  Google Scholar 

  27. Chowdury, A., Krolikowski, W., Akhmediev, N.: Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits. Phys. Rev. E 96(4), 042209 (2017)

    Article  MathSciNet  Google Scholar 

  28. Degasperis, A., Lombardo, S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88(5), 052914 (2013)

    Article  Google Scholar 

  29. Schiebold, C.: Asymptotics for the multiple pole solutions of the nonlinear Schrödinger equation. Nonlinearity 30(7), 2930 (2017)

    Article  MathSciNet  Google Scholar 

  30. Tsuru, H., Wadati, M.: The multiple pole solutions of the sine-Gordon equation. J. Phys. Soc. Jpn. 53(9), 2908–2921 (1984)

    Article  MathSciNet  Google Scholar 

  31. Li, M., Zhang, X., Xu, T., Li, L.: Asymptotic analysis and soliton interactions of the multi-pole solutions in the Hirota equation. J. Phys. Soc. Jpn. 89(5), 054004 (2020)

    Article  Google Scholar 

  32. Gagnon, L., Stiévenart, N.: N-soliton interaction in optical fibers: the multiple-pole case. Opt. Lett. 19(9), 619–621 (1994)

    Article  Google Scholar 

  33. Carter, T.A., Brugman, B., Pribyl, P., Lybarger, W.: Laboratory observation of a nonlinear interaction between shear Alfvén waves. Phys. Rev. Lett. 96(15), 155001 (2006)

    Article  Google Scholar 

  34. Gerdjikov, V.S., Ivanov, M.I.: The quadratic bundle of general form and the nonlinear evolution equations. Bulg. J. Phys. 10, 130 (1983)

    Google Scholar 

  35. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64(5), 1519–1523 (1995)

    Article  Google Scholar 

  36. Xu, S., He, J.: The rogue wave and breather solution of the Gerdjikov-Ivanov equation. J. Math. Phys. 53(6), 063507 (2012)

    Article  MathSciNet  Google Scholar 

  37. Guo, L., Zhang, Y., Xu, S., Wu, Z., He, J.: The higher order rogue wave solutions of the Gerdjikov-Ivanov equation. Phys. Scr. 89(3), 035501 (2014)

    Article  Google Scholar 

  38. Yilmaz, H.: Exact solutions of the Gerdjikov-Ivanov equation using Darboux transformations. J. Nonlinear Math. Phy. 22(1), 32–46 (2015)

    Article  MathSciNet  Google Scholar 

  39. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. P. Am. Math. Soc. 146(4), 1713–1729 (2018)

    Article  Google Scholar 

  40. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma. Chaos Soliton Fract. 120, 259–265 (2019)

    Article  Google Scholar 

  41. Li, L. Q., Gao, Y. T., Yu, X., Jia, T. T., Hu, L., Zhang, C. Y.: Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel. Chin. J. Phys. (2022) (in press). https://doi.org/10.1016/j.cjph.2021.09.004

  42. Hu, C.C., Tian, B., Zhao, X.: Rogue and lump waves for the (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice. Int. J. Mod. Phys. B 35, 2150320 (2021)

    Article  Google Scholar 

  43. Feng, Y.J., Gao, Y.T., Jia, T.T., Li, L.Q.: Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows. Mod. Phys. Lett. B 33, 1950354 (2019)

    Article  MathSciNet  Google Scholar 

  44. Zhao, X.H.: Dark soliton solutions for a coupled nonlinear Schrödinger system. Appl. Math. Lett. 121, 107383 (2021)

    Article  Google Scholar 

  45. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Solitons Fract. 142, 110363 (2021)

    Article  MathSciNet  Google Scholar 

  46. Liu, F.Y., Gao, Y.T., Yu, X., Hu, L., Wu, X.H.: Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Chaos Solitons Fract. 152, 111355 (2021)

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, 11805020 and 11471050, by the Fund of State Key Laboratory for Information Photonics and Optical Communications (Beijing University for Posts and Telecommunications) (IPOC:2017ZZ05), by the Fundamental Research Funds of the Central Universities of China under Grant No. 2011BUPTYB02, and by the Beijing University of Posts and Telecommunications Excellent Ph.D. Students Foundation (No. CX2021318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SS., Tian, B., Tian, HY. et al. N-Fold generalized Darboux transformation and semirational solutions for the Gerdjikov-Ivanov equation for the Alfvén waves in a plasma. Nonlinear Dyn 108, 1561–1572 (2022). https://doi.org/10.1007/s11071-021-07183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07183-8

Keywords

Navigation