Skip to main content
Log in

Funnel-bounded synchronization control for bilateral teleoperation with asymmetric communication delays

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The positional synchronization control problem is addressed for bilateral teleoperation systems subjected to system uncertainties, exogenous forces, unknown disturbances and asymmetric communication delays. In order to guarantee fast and accurate synchronization performance, a funnel-like curve is predefined to act as the boundary for tracking errors, and the controller design process is divided into two steps based on a backstepping approach. By coordination transformation of state variables, the controller is synthesized to ensure that all transformed variables converge and the system is stabilized. System uncertainties are compensated for by using an RBF(radial basis functions) neural network. Theoretical analysis proves that the closed-loop system is stable and positional synchronization is achieved. Simulation results demonstrate that the proposed method provides satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhai, D.-H., Xia, Y.: A prescribed-performance-like control for improving tracking performance of networked robots. Int. J. Robust Nonlinear Control 31, 2546–2571 (2021)

    Article  MathSciNet  Google Scholar 

  3. Yao, X.-Y., Ding, H.-F., Ge, M.-F.: Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlinear Dyn. 92, 1649–1664 (2018)

    Article  MATH  Google Scholar 

  4. Li, Z., Xia, Y., Wang, D., Zhai, D., Su, C., Zhao, X.: Neural network-based control of networked trilateral teleoperation with geometrically unknown constraints. IEEE Trans. Cybern. 46(5), 1051–1064 (2016)

    Article  Google Scholar 

  5. Islam, S., Liu, P.X., Saddik, A.E.: Teleoperation systems with symmetric and unsymmetric time varying communication delay. IEEE Trans. Ins. Meas. 62(11), 2943–2953 (2013)

    Article  Google Scholar 

  6. Chen, H., Huang, P., Liu, Z.: Mode switching-based symmetric predictive control mechanism for networked teleoperation space robot system. IEEE/ASME Trans. Mech. 24(6), 2706–2717 (2019)

    Article  Google Scholar 

  7. Yang, Y., Hua, C., Guan, X.: Synchronization control for bilateral teleoperation system with prescribed performance under asymmetric time delay. Nonlinear Dyn. 81, 481–493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, J., Wang, H., Liu, P. X.: Finite-time synchronization control for bilateral teleoperation systems with asymmetric time-varying delay and input dead zone. IEEE/ASME Transactions on Mechatronics, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9197607

  9. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Auto. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  10. Hua, C., Liu, X.P.: Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Trans. Robotics 26(5), 925–932 (2010)

    Article  Google Scholar 

  11. Niemeyer, G., Slotine, J.J.E.: Stable adaptive teleoperation. IEEE J. Oceanic Eng. 16(1), 152–162 (1991)

    Article  Google Scholar 

  12. Mohammadi, L., Alfi, A., Xu, B.: Robust bilateral control for state convergence in uncertain teleoperation systems with time-varying delay: a guaranteed cost control design. Nonlinear Dyn. 88, 1413–1426 (2017)

    Article  MATH  Google Scholar 

  13. Li, Z., Cao, X., Tang, Y., Li, R., Ye, W.: Bilateral teleoperation of holonomic constrained robotic systems with time-varying delays. IEEE Trans. Ins. Meas. 62(4), 752–765 (2013)

    Article  Google Scholar 

  14. Chen, Z., Huang, F., Sun, W., Gu, J., Yao, B.: RBF neural network based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE/ASME Trans. Mech. 24(6), 906–918 (2019)

    Google Scholar 

  15. Ye, Y., Liu, P.X.: Improving haptic feedback fidelity in wave-variable-based teleoperation orientated to telemedical applications. IEEE Trans. Ins. Meas. 58(8), 2847–2855 (2009)

    Article  Google Scholar 

  16. Zhai, D., Xia, Y.: Adaptive control for teleoperation system with varying time delays and input saturation constraints. IEEE Trans. Ind. Electron. 63(11), 6921–6929 (2016)

    Article  Google Scholar 

  17. Yan, J., Salcudean, S.E.: Teleoperation controller design using \(H_\infty \)-optimization with application to motion-scaling. IEEE Trans. Control Syst. Technol. 4(3), 244–258 (1996)

    Article  Google Scholar 

  18. Khan, S., Sabanovic, A., Nergiz, A.O.: Scaled bilateral teleoperation using discrete-time sliding-mode controller. IEEE Trans. Indus. Electron. 56(9), 3609–3618 (2009)

    Article  Google Scholar 

  19. Zhai, D., Xia, Y.: Finite-time control of teleoperation systems with input saturation and varying time delays. IEEE Trans. Syst. Man Cybern.: Syst. 47(7), 1522–1534 (2017)

    Article  Google Scholar 

  20. Polushin, I.G., Liu, P.X., Lung, C.H.: A force reflection algorithm for improved transparency in bilateral teleoperation with communication delay. IEEE/ASME Trans. Mech. 12(3), 361–374 (2007)

    Article  Google Scholar 

  21. Islam, S., Liu, P.X., Saddik, A.E.: New stability and tracking criteria for a class of bilateral teleoperation systems. Inf. Sci. 278, 868–882 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, Y., Hua, C., Li, J., Guan, X.: Finite-time output-feedback synchronization control for bilateral teleoperation system via neural networks. Inf. Sci. 406, 216–233 (2017)

    Article  MATH  Google Scholar 

  23. Ganjefar, S., Sarajchi, M.H., Beheshti, M.T.H.: Adaptive sliding mode controller design for nonlinear teleoperation systems using singular perturbation method. Nonlinear Dyn. 81, 1435–1452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, Z., Yu, T., Sun, Y., Liang, B.: Finite-time output-feedback control for teleoperation systems subject to mismatched term and state constraints. J. Fr. Inst. 357(16), 11421–11447 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, H., Liu, P.X., Liu, S.: Adaptive neural synchronization control for bilateral teleoperation systems with time delay and backlash-like hysteresis. IEEE Trans. Cybern. 47(10), 3018–3026 (2017)

    Article  Google Scholar 

  26. Bao, J., Wang, H., Liu, P.X., Chen, C.: Fuzzy finite-time tracking control for a class of nonaffine nonlinear systems with unknown dead zones. IEEE Trans. Syst., Man Cybern.: Syst. 51(1), 452–463 (2021)

    Article  Google Scholar 

  27. Islam, S., Liu, P.X., El Saddik, A.: Nonlinear adaptive control for quadrotor flying vehicle. Nonlinear Dyn. 78(1), 117–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, X., Su, C., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3), 407–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2017)

    Google Scholar 

  30. Li, S., Wang, H., Rafique, M.U.: A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neur. Netw. Learn. Syst. 29(5), 1908–1918 (2018)

    Article  MathSciNet  Google Scholar 

  31. Yoo, S.J., Park, J.B.: Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans. Syst., Man Cybern. Part B (Cybernetics) 39(5), 1316–1323 (2009)

    Article  Google Scholar 

  32. Wang, M., Ge, S.S., Hong, K.-S.: Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays. IEEE Trans. Neur. Netw. 21(11), 1804–1816 (2010)

    Article  Google Scholar 

  33. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, C., Wang, X., Li, Z., Li, Y., Su, C.Y.: Teleoperation control based on combination of wave variable and neural networks. IEEE Trans. Syst. Man Cybern.: Syst. 47(8), 2125–2136 (2017)

    Article  Google Scholar 

  35. Tong, S., Zhang, L., Li, Y.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Syst., Man Cybern.: Syst. 46(1), 37–47 (2016)

    Article  Google Scholar 

  36. Chen, W., Jiao, L., Li, J., Li, R.: Adaptive nn backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays. IEEE Trans. Syst., Man Cybern. Part B (Cybern.) 40(3), 939–950 (2010)

    Article  Google Scholar 

  37. Park, S.H., Han, S.I.: Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller. IET Control Theory Appl. 5(12), 1397–1417 (2011)

    Article  MathSciNet  Google Scholar 

  38. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Indus. Inf. 13(1), 48–59 (2017)

    Article  Google Scholar 

  39. Li, Z., Cao, X., Ding, N.: Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans. Fuzzy Syst. 19(4), 745–757 (2011)

    Article  Google Scholar 

  40. He, W., Huang, H., Ge, S.S.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybern. 47(10), 3136–3147 (2017)

    Article  Google Scholar 

  41. Ilchmann, A., Ryan, E.P., Sangwin, C.: Tracking with prescribed transient behaviour. ESAIM: Control Optim. Calc. Var. 7(7), 471–493 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010)

    Article  Google Scholar 

  43. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bechlioulis, C.P., Doulgeri, Z., Rovithakis, G.A.: Neuro-adaptive force/position control with prescribed performance and guaranteed contact maintenance. IEEE Trans. Neural Netw. 21(12), 1857–1868 (2010)

    Article  Google Scholar 

  45. Sun, D., Naghdy, F., Du, H.: Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance. Nonlinear Dyn. 87, 1253–1270 (2017)

    Article  MATH  Google Scholar 

  46. Liu, Y.J., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li, Y., Tong, S.: Adaptive fuzzy output constrained control design for multi-input multioutput stochastic nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 47(12), 4086–4095 (2017)

    Article  Google Scholar 

  48. Han, S.I., Lee, J.M.: Fuzzy echo state neural networks and funnel dynamic surface control for prescribed performance of a nonlinear dynamic system. IEEE Trans. Indus. Electr. 61(2), 1099–1112 (2014)

    Article  Google Scholar 

  49. Liu, X., Wang, H., Gao, C., Chen, M.: Adaptive fuzzy funnel control for a class of strict feedback nonlinear systems. Neurocomputing 241, 71–80 (2017)

    Article  Google Scholar 

  50. Bao, J., Wang, H., Liu, P.X.: Adaptive finitetime tracking control for robotic manipulators with funnel boundary. Int. J. Adapt. Control Signal Process. 34(5), 575–589 (2020)

  51. Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78(9), 1481–1497 (1990)

    Article  MATH  Google Scholar 

  52. Yang, Y., Hua, C., Guan, X.: Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Trans. Cybern. 46(3), 609–619 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Xiaoping Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, P.X., Wang, H. et al. Funnel-bounded synchronization control for bilateral teleoperation with asymmetric communication delays. Nonlinear Dyn 107, 3641–3654 (2022). https://doi.org/10.1007/s11071-021-07176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07176-7

Keywords

Navigation