Skip to main content
Log in

Analysis of 1:1 internal resonance of a CFRP cable with an external 1/3 subharmonic resonance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the non-planar vibration equations of a cable made of carbon fiber reinforced polymer (CFRP), the nonlinear behaviors of the cable are studied. The one-to-one internal resonance of the lowest in-plane and out-of-plane modes of the cable is investigated. Three different cases, namely, 1/3-order subharmonic resonance of the in-plane mode, 1/3-order subharmonic resonance of the out-of-plane mode and 1/3-order subharmonic resonance of both of the in-plane and out-of-plane modes are examined. The vibration equations of the cable are discretized by using Galerkin’s method. In this way, the ordinary differential equations (ODEs) are obtained. The multiple time scale method is employed to solve the ODEs, and the corresponding modulation equations are derived. Then, the response curves of the cable are obtained by using Newton-Raphson method and pseudo arc-length algorithm. Meanwhile, the response curves of the CFRP cable are compared with those of the steel cable to explore the differences in nonlinear behaviors of the cables made of different materials. The results show that the response amplitude of CFRP cable is smaller than that of steel cable, and the nonlinear behavior becomes better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data in this study will be made available upon reasonable request.

References

  1. Su, X.Y., Kang, H.J., Chen, J.F., Guo, T.D., Sun, C.S., Zhao, Y.Y.: Experimental study on in-plane nonlinear vibrations of the cable-stayed bridge. Nonlinear Dyn. 98(2), 1247–1266 (2019)

    Article  Google Scholar 

  2. Xu, L., Hui, Y., Yang, Q.S., Chen, Z.Q., Law, S.S.: Modeling and modal analysis of suspension bridge based on continual formula method. Mech. Syst. Sig. Process. 162, 107–855 (2022)

    Article  Google Scholar 

  3. Irvine, H.M.: Cable structures. Dover Publications, New York (1992)

    Google Scholar 

  4. Hagedorn, P., Schäfer, B.: On non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 15(4–5), 333–3415 (1980)

    Article  Google Scholar 

  5. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19(1), 39–52 (1984)

    Article  Google Scholar 

  6. Benedettini, F., Rega, G.: Non-linear dynamics of an elastic cable under planar excitation. Int. J. Non-Linear Mech. 22(6), 497–509 (1987)

    Article  Google Scholar 

  7. Benedettini, F., Rega, G.: Planar non-linear oscillations of elastic cables under superharmonic resonance conditions. J. Sound Vib. 132(3), 353–366 (1989)

    Article  Google Scholar 

  8. Rega, G., Benedettini, F.: Planar non-linear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132(3), 367–381 (1989)

    Article  Google Scholar 

  9. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27(2), 233–250 (1992)

    Article  Google Scholar 

  10. Gattulli, V., Vestroni, F.: Nonlinear strategies for longitudinal control in the stabilization of an oscillating suspended cable. Dyn. Control 10(4), 359–374 (2000)

    Article  MathSciNet  Google Scholar 

  11. Zhao, Y.Y., Wang, L.H.: On the symmetric modal interaction of the suspended cable: three-to-one internal resonance. J. Sound Vib. 294(4–5), 1073–1093 (2006)

    Article  Google Scholar 

  12. Wang, L.H., Zhao, Y.Y.: Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances. Int. J. Solids Struct. 43(25–26), 7800–7819 (2006)

    Article  Google Scholar 

  13. Lacarbonara, W., Rega, G.: Resonate nonlinear normal modes Part II: activation/orthogonality conditions for shallow structural systems. Int. J. Non-linear Mech. 38, 873–887 (2003)

    Article  Google Scholar 

  14. Wang, L.H., Zhao, Y.Y.: Multiple internal resonances and non-planar dynamics of shallow suspended cables to the harmonic excitations. J. Sound Vib. 319(1–2), 1–14 (2009)

    Article  Google Scholar 

  15. Xie, X., Li, X.Z., Shen, Y.G.: Static and dynamic characteristics of a long-span cable-stayed bridge with CFRP cables. Materials. 7(6), 4854–4877 (2014)

    Article  Google Scholar 

  16. Ren, L., Fang, Z., Wang, K.: Design and behavior of super-long span cable-stayed bridge with CFRP cables and UHPC members. Compos. B Eng. 164, 72–81 (2019)

    Article  Google Scholar 

  17. Su, X.Y., Kang, H.J., Guo, T.D., Cong, Y.Y.: Modeling and parametric analysis of in-plane free vibration of a floating cable-stayed bridge with transfer matrix method. Int. J. Struct. Stab. Dyn. 20(1), 205004 (2020)

    Article  MathSciNet  Google Scholar 

  18. Mei, K.H., Sun, S.J., Jin, G.P., Sun, Y.M.: Static and dynamic mechanical properties of long-span cable-stayed bridges using CFRP cables. Adv. Civil Eng. 2017, 1–11 (2017)

    Google Scholar 

  19. Xie, G.H., Yin, J., Liu, R.G., Chen, B., Cai, D.S.: Experimental and numerical investigation on the static and dynamic behaviors of cable-stayed bridges with CFRP cables. Compos. B Eng. 111, 235–242 (2016)

    Article  Google Scholar 

  20. Liu, H., Xian, J.: Analysis on sensitivity of global mode of floating cable-stayed bridge to CFRP cable. J. Dyn. Control. 16(3), 250–257 (2018)

    Google Scholar 

  21. Mei, K., Jin, G., Sun, S.: Nonlinear vibrations of CFRP cables excited by periodic motions of supports in cable-stayed bridges. J. Vib. Control 24(22), 5249–5260 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kang, H.J., Guo, T.D., Zhu, W.D., Su, J.Y., Zhao, B.Y.: Dynamical modeling and non-planar coupled behavior of inclined CFRP cables under simultaneous internal and external resonances. Appl. Math. Mech. (English Edition). 40(5), 649–678 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kang, H.J., Zhu, H.P., Zhao, Y.Y., Yi, Z.P.: In-plane non-linear dynamics of the stay cables. Nonlinear Dyn. 73(3), 1385–1398 (2013)

    Article  MathSciNet  Google Scholar 

  24. Seydel, R.: Practical bifurcation and stability analysis. Springer, New York (2009)

    MATH  Google Scholar 

  25. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics. Wiley, New York (1995)

    Book  Google Scholar 

  26. Rega, G., Srinil, N.: Nonlinear hybrid-mode resonant forced oscillations of sagged inclined cables at avoidances. J. Comput. Nonlin. Dyn. 2(4), 324–336 (2007)

    Article  Google Scholar 

  27. Lacarbonara, W., Arafat, H.N., Nayfeh, A.H.: Non-linear interactions in imperfect beams at veering. Int. J. Nonlinear Mech. 40, 987–1003 (2005)

    Article  Google Scholar 

  28. Guo, T., Rega, G.: Direct and discretized perturbations revisited: A new error source interpretation, with application to moving boundary problem. Eur. J. Mech/A Solids. 81, 103–936 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the National Natural Science Foundation of China (11972151 and 11872176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

For the sake of description, the following quantities are firstly introduced

$$ B_{1} = \mathop \int \limits_{0}^{1} y^{\prime } (x)\varphi^{\prime } (x){\text{d}}x;\;B_{2} = \frac{1}{2}\mathop \int \limits_{0}^{1} \varphi^{\prime } (x)\varphi^{\prime } (x){\text{d}}x;\;B_{2} = \frac{1}{2}\mathop \int \limits_{0}^{1} \phi^{\prime } (x)\phi^{\prime } (x){\text{d}}x; $$
$$ k_{1} = \mathop \int \limits_{0}^{1} (\varphi (x)\varphi (x) - \xi \beta^{2} \varphi (x)\varphi^{^{\prime\prime}} (x)){\text{d}}x;\;k_{2} = \mathop \smallint \limits_{0}^{1} (\phi (x)\phi (x) - \xi \beta^{2} \phi (x)\phi^{^{\prime\prime}} (x)){\text{d}}x; $$

In this way, the Galerkin integral coefficients in Eqs. (10) and (11) can be expressed as follows

$$ b_{11} = \frac{1}{{k_{1} }}\mathop \int \limits_{0}^{1} (\beta^{2} \varphi (x)\varphi^{\prime \prime \;\prime \prime } (x) - B_{1} \varphi (x)y^{^{\prime\prime}} (x) - \frac{1}{\lambda }\varphi (x)\varphi^{^{\prime\prime}} (x) + \frac{{\xi \beta^{2} }}{\lambda }\varphi (x)\varphi^{\prime \prime \;\prime \prime } (x)){\text{d}}x; $$
$$ b_{12} = \frac{1}{{k_{1} }}\mathop \int \limits_{0}^{1} (B_{1} \xi \beta^{2} \varphi (x)\varphi^{\prime \prime \;\prime \prime } (x) - B_{1} \varphi (x)\varphi^{^{\prime\prime}} (x) - B_{2} \varphi (x)y^{^{\prime\prime}} (x)){\text{d}}x; $$
$$ b_{13} = \frac{1}{{k_{1} }}\mathop \int \limits_{0}^{1} B_{3} \varphi (x)y^{^{\prime\prime}} (x){\text{d}}x; $$
$$ b_{14} = \frac{1}{{k_{1} }}\mathop \int \limits_{0}^{1} (B_{2} \xi \beta^{2} \varphi (x)\varphi^{\prime \prime \;\prime \prime } (x) - B_{2} \varphi (x)\varphi^{^{\prime\prime}} (x)){\text{d}}x; $$
$$ b_{15} = \frac{1}{{k_{1} }}\mathop \int \limits_{0}^{1} (B_{3} \xi \beta^{2} \varphi (x)\varphi^{\prime \prime \;\prime \prime } (x) - B_{3} \varphi (x)\varphi^{^{\prime\prime}} (x)){\text{d}}x; $$
$$ b_{21} = \frac{1}{{k_{2} }}\mathop \int \limits_{0}^{1} (\beta^{2} \phi (x)\phi^{^{\prime\prime}} (x) - \frac{1}{\lambda }\phi (x)\phi^{^{\prime\prime}} (x) + \frac{{\xi \beta^{2} }}{\lambda }\phi (x)\phi^{\prime \prime \;\prime \prime } (x)){\text{d}}x; $$
$$ b_{22} = \frac{1}{{k_{2} }}\mathop \int \limits_{0}^{1} (B_{1} \xi \beta^{2} \phi (x)\phi^{\prime \prime \;\prime \prime } (x) - B_{1} \phi (x)\phi^{^{\prime\prime}} (x)){\text{d}}x; $$
$$ b_{23} = \frac{1}{{k_{2} }}\mathop \int \limits_{0}^{1} (B_{2} \xi \beta^{2} \phi (x)\phi^{\prime \prime \;\prime \prime } (x) - B_{2} \phi (x)\phi^{^{\prime\prime}} (x))dx; $$
$$ b_{24} = \frac{1}{{k_{2} }}\mathop \int \limits_{0}^{1} (B_{3} \xi \beta^{2} \phi (x)\phi^{\prime \prime \;\prime \prime } (x) - B_{3} \phi (x)\phi^{^{\prime\prime}} (x)){\text{d}}x; $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Kang, H. Analysis of 1:1 internal resonance of a CFRP cable with an external 1/3 subharmonic resonance. Nonlinear Dyn 107, 3425–3441 (2022). https://doi.org/10.1007/s11071-021-07174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07174-9

Keywords

Navigation