Skip to main content
Log in

Ultrashort self-similar periodic waves and similaritons in an inhomogeneous optical medium with an external source and modulated coefficients

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we use the similarity transformation to reduce the generalized higher-order nonlinear Schrödinger equation with space- and time-modulated coefficients incorporating group velocity dispersion, self-phase modulation, self-steepening, self-frequency shift, gain or loss term, differential gain or loss term, group velocity of the modes, and inhomogeneous source to Hirota equation with a varying source. Afterward, we reduce this Hirota equation to a second-order nonhomogeneous nonlinear ordinary differential equation with constant source via a plane wave transformation and some constraint conditions. Finally, by using Möbius transformation, various types of exact self-similar femtosecond solutions are deduced such as the bright and dark-type solitons with W-shaped profiles, the bell-shaped bright solitons, and the periodic wave solutions. The evolutional dynamics of these self-similar structures are investigated in periodic distributed system. Our analysis shows that a suitable choice of the amplitude of the source term, the gain or loss parameter, and the differential gain or loss parameter allows us to control the similariton structures. In addition, the stability analysis of the solutions is discussed numerically. Our results may be useful to explain some nonlinear wave phenomena in nonlinear optics and related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Sources data for figures are provided with the paper.

References

  1. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I: anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)

    Article  Google Scholar 

  2. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Wang, Y.Y., Li, J.T., Dai, C.Q., Chen, X.F., Zhang, J.F.: Solitary waves and rogue waves in a plasma with a nonthermal electrons featuring Tsallis distribution. Phys. Lett. A 377, 2097–2104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Osborne, A., Onorato, M., Serio, M.: Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Lett. A 275, 386–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial state. Phys. Rev. Lett. 15(6), 240–243 (1965)

    Article  MATH  Google Scholar 

  6. Scott, A.C.: The Nonlinear Universe. Springer, Berlin (2007)

    Google Scholar 

  7. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  Google Scholar 

  8. Serkin, V.N., Hasegawa, A.: Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion and nonlinear management. IEEE J. Sel. Top. Quantum Electron. 8, 418–431 (2002)

    Article  Google Scholar 

  9. Hao, R., Li, L., Li, Z., Xue, W., Zhou, G.: A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger with variable coefficients. Opt. Commun. 236, 79–86 (2004)

    Article  Google Scholar 

  10. Liu, W.J., Tian, B., Zhang, H.Q.: Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. Phys. Rev. E 78, 066613 (2008)

    Article  Google Scholar 

  11. Tiofack, C.G.L., Mohamadou, A., Kofane, T.C., Porsezian, K.P.: Exact quasi-soliton solutions and soliton interaction for the inhomogeneous coupled nonlinear Schrödinger equations. J. Mod. Opt. 57, 261–272 (2010)

    Article  MATH  Google Scholar 

  12. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90(11), 113902 (2003)

    Article  Google Scholar 

  13. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. E 71, 056619 (2005)

    Article  MathSciNet  Google Scholar 

  14. Kruglov, V.I., Peacock, A.C., Dudley, J.M., Harvey, J.D.: Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers. Opt. Lett. 25, 1753–1755 (2000)

    Article  Google Scholar 

  15. Ponomarenko, S.A., Agrawal, G.P.: Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97(1), 013901 (2006)

    Article  Google Scholar 

  16. Dai, C.Q., Wang, Y.Y.: Nonautonomous solitons in parity-time symmetric potentials. Opt. Commun. 315, 303–309 (2014)

    Article  Google Scholar 

  17. Meradji, S., Triki, H., Zhou, Q., Biswas, A., Ekici, M., Liu, W.: Chirped self-similar cnoidal waves and similaritons in an inhomogeneous optical medium with resonant nonlinearity. Chaos Solitons Fractal 141, 110441 (2020)

    Article  MathSciNet  Google Scholar 

  18. Yang, Z.Y., Zhao, L.C., Zhang, T., Li, Y.H., Yue, R.H.: Snakelike nonautonomous solitons in a graded-index grating waveguide. Phys. Rev. A 81, 043826 (2010)

    Article  Google Scholar 

  19. He, J.R., Xu, S.L., Xue, L.: Nonlinear tunneling effect of snakelike self-similar waves in grating dual-core waveguide amplifier. Results Phys. 15, 102742 (2019)

    Article  Google Scholar 

  20. Staliunas, K., Egorov, O., Kivshar, Y.S., Lederer, F.: Bloch cavity solitons in nonlinear resonators with intracavity photonic crystals. Phys. Rev. Lett. 101, 153903 (2008)

    Article  Google Scholar 

  21. Dalfovo, F., Giorgini, S., Pitaevski, L.P.: Stringari, S: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  22. Belmonte-Beitia, J., Perez-GarciA, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Article  Google Scholar 

  23. He, J.R., Li, H.M.: Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials. Phys. Rev. E 83, 066607 (2011)

    Article  Google Scholar 

  24. Avelar, A.T., Bazeia, D., Cardoso, W.B.: Solitons with cubic and quintic nonlinearities modulated in space and time. Phys. Rev. E 79, 025602(R) (2009)

    Article  Google Scholar 

  25. Yan, Z., Konotop, V.V.: Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. Phys. Rev. E 80, 036607 (2009)

    Article  Google Scholar 

  26. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Acdemic Press, Boston (2007)

    MATH  Google Scholar 

  27. Akhmediev, N.N., Ankiewicz, A.: Solitons, Nonlinear Pulse and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  28. Temgoua, D.D.E., Tchoula, T.M.B., Kofane, T.C.: Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials. Phys. Rev. E 97, 042205 (2018)

    Article  Google Scholar 

  29. Temgoua, D.D.E., Tchoula, T.M.B., Maaza, M., Kofane, T.C.: Contrast of optical activity and rogue wave propagation in chiral materials. Nonlinear Dyn. 95, 2691–2702 (2019)

    Article  MATH  Google Scholar 

  30. Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S.: Modulation instability and solitons on a cw background in an optical fiber with higher-order effects. Phys. Rev. E 67, 026603 (2003)

    Article  MathSciNet  Google Scholar 

  31. Porsezian, K., Nakkeeran, K.: Optical solitons in presence of Kerr dispersion and selffrequency shift. Phys. Rev. Lett. 76, 3955–3958 (1996)

    Article  Google Scholar 

  32. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons From Fibers to Photonic Crystals. Academic, New York (2003)

    Google Scholar 

  33. Kruglov, V.I., Triki, H.: Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Phys. Rev. A 103, 031521 (2021)

    Article  MathSciNet  Google Scholar 

  34. Kruglov, V.I., Triki, H.: Quartic and dipole solitons in a highly dispersive optical waveguide with self-steepening nonlinearity and varying parameters. Phys. Rev. A 102, 043509 (2020)

  35. Kaur, H., Goyal, A., Raju, T.S., Kumar, C.N.: Generation and controlling of ultrashort self-similar soliton and rogue waves in inhomogeneous optical waveguide. Optik 223, 165634 (2020)

    Article  Google Scholar 

  36. Dai, C.Q., Zhu, H.P., Zheng, C.L.: Tunnelling effects of solitons in optical fibers with higher-order effects. Z. Naturforsch. 67a, 338–346 (2012)

    Article  Google Scholar 

  37. Rajan, M.S.M., Hakkim, J., Mahalingam, A., Uthayakumar, A.: Dispersion management and cascade compression of femtosecond nonautonomous soliton in birefringent fiber. Eur. Phys. J. D 67, 1–8 (2013)

    Google Scholar 

  38. Yan, Z., Dai, C.: Optical rogue waves in the generalized inhomogeneous higher-order nonlinear Schrödinger equation with modulating coefficients. J. Opt. 15, 064012 (2013)

    Article  Google Scholar 

  39. Raju, T.S., Panigrahi, P.K.: Self-similar propagation in a graded-index nonlinear fiber-amplifier with an external source. Phys. Rev. A 81, 043820 (2010)

    Article  Google Scholar 

  40. Raju, T.S., Panigrahi, P.K.: Optical similaritons in a tapered graded-index nonlinear fiber-amplifier with an external source. Phys. Rev. A 84(3), 033807 (2011)

    Article  Google Scholar 

  41. Raju, T.S., Panigrahi, P.K., Kumar, C.N.: Compression and propagation of dispersive and rectangular similaritons in asymmetric twin-core fibers. JOSA B 30, 934–938 (2013)

    Article  Google Scholar 

  42. He, J.R., Yi, L.: Exact optical self-similar solutions in a tapered graded-index nonlinear-fiber amplifier with an external source. Opt. Commun. 320, 129–137 (2014)

    Article  Google Scholar 

  43. Nozaki, K., Bekki, N.: Chaos in a perturbed nonlinear Schrödinger equation. Phys. Rev. Lett. 50(17), 1226–1229 (1983)

    Article  MathSciNet  Google Scholar 

  44. Lomdahl, P.S., Samuelsen, M.R.: Persistent breather excitation in an AC-driven sine-Gordon system with loss. Phys. Rev. A 34(1), 664–667 (1986)

    Article  Google Scholar 

  45. Kaup, D.J., Newell, A.C.: Solitons as particles, oscillators, and in slowing changing media: a singular perturbation theory. Phys. Rev. B 18(10), 5162–5167 (1978)

    Article  MathSciNet  Google Scholar 

  46. Nozaki, K., Bekki, N.: Low dimensional chaos in a driven damped nonlinear Schrödinger equation. Phys. D Nonlinear Phenom. 21(2), 381–393 (1986)

    Article  MATH  Google Scholar 

  47. Raju, T.S., Kumar, C.N., Panigrahi, P.K.: On exact soliary wave solutions of the nonlinear Schrödinger equation with a source. J. Phys. A Math. Gen. 38, L271–L276 (2005)

    Article  MATH  Google Scholar 

  48. Paul, T., Richter, K., Schlagheck, P.: Nonlinear resonant transport of Bose-Einstein condensates. Phys. Rev. Lett. 94, 020404 (2005)

    Article  Google Scholar 

  49. He, J.R., Xu, S., Xue, L.: Snakelike similaritons in tapered grating dual-core waveguide amplifiers. Phys. Scr. 94, 105216 (2019)

    Article  Google Scholar 

  50. He, J.R., Deng, W.W., Xue, L.: Snakelike similaritons in combined harmonic-lattice potentials with a varying source. Nonlinear Dyn. 100, 1599–1609 (2020)

    Article  Google Scholar 

  51. Raju, T.S.: Spatiotemporal optical similaritons in dual-core waveguide with an external source. Commun. Nonlinear Sci. Numer. Simul. 45, 75–80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yan, Z.Y., Zhang, X.F., Liu, W.M.: Nonautonomous matter waves in a waveguide. Phys. Rev. A 84, 023627 (2011)

    Article  Google Scholar 

  53. Yang, Y., Yan, Z., Mihalache, D.: Controlling temporal solitary waves in the generalized inhomogeneous coupled nonlinear Schrödinger equations with varying source terms. J. Math. Phys. 56, 053508–19 (2015)

  54. Yan, Z.: Envelope exact solutions for the generalized nonlinear Schrödinger equation with a source. J. Phys. A Math. Gen. 39, L401–L406 (2006)

Download references

Acknowledgements

The authors would like to thank the referees for their valuables suggestions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djoptoussia, C., Tiofack, C.G.L., Alim et al. Ultrashort self-similar periodic waves and similaritons in an inhomogeneous optical medium with an external source and modulated coefficients. Nonlinear Dyn 107, 3833–3846 (2022). https://doi.org/10.1007/s11071-021-07173-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07173-w

Keywords

Navigation