Skip to main content
Log in

Spatiotemporally modulated similaritons and composite waves in inhomogeneous system

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

General and refined spatiotemporal similariton solutions are presented by introducing arbitrary real temporal and spatial modulation functions that construct flexible and controllable relationships among dispersion, nonlinearity and external potential in spatiotemporal modulation inhomogeneous system. The modulated bright similariton (MBS), modulated dark similariton (MDS) and modulated plane wave (MPW) solutions are achieved by a general self-similar transformation method, and modulated dynamics of the MBS, MDS and MPW by choosing Gaussian/periodic temporal function and periodic spatial function. Furthermore, by applying self-similar transformation to M-component spatiotemporal inhomogeneous nonlinear Schrödinger equations, M-component spatiotemporal solutions are obtained and the spatiotemporal modulated properties of 2-component composite waves are studied in detail. The presented results may open many new possibilities for generation and controlling of solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Google Scholar 

  2. Kengne, E., Liu, W.M.: Management of matter-wave solitons in Bose-Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential. Phys. Rev. E 98, 012204 (2018)

    Google Scholar 

  3. Juan, B.B., Víctor, M.P.G., Vadym, V., Vladimir, V.K.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Google Scholar 

  4. Chen, S.H., Dudley, J.M.: Spatiotemporal nonlinear optical self-similarity in three dimensions. Phys. Rev. Lett. 102, 233903 (2009)

    Google Scholar 

  5. Kengne, E., Liu, W.M., Malomed, B.A.: Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates. Phys. Rep. 899, 1–62 (2021)

    MathSciNet  Google Scholar 

  6. Huo, K., Yang, R.C., Jia, H.P., He, Y.J., Christian, M.: Exact similariton solution families and diverse composite waves in coherently coupled inhomogeneous systems. Nonlinear Dyn. 111, 14435–14451 (2023)

    Google Scholar 

  7. Yang, D.Y., Tian, B., Wang, M., Zhao, X., Shan, W.R., Jiang, Y.: Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma. Nonlinear Dyn. 107, 2657–2666 (2022)

    Google Scholar 

  8. Ding, C.C., Gao, Y.T., Deng, G.F., Wang, D.: Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fractals 133, 109580 (2020)

    MathSciNet  Google Scholar 

  9. Yang, R.C., Gao, J., Jia, H.P., Tian, J.P., Christian, J.M.: Ultrashort nonautonomous similariton solutions and the cascade tunneling of interacting similaritons. Opt. Commun. 459, 125025 (2020)

    Google Scholar 

  10. Chen, H.Y., Zhu, H.P.: Higher-dimensional vector two-component solitons of a nonautonomous partially nonlocal coupled NLS model in a linear and harmonic potential. Nonlinear Dyn. 111, 581–590 (2023)

    Google Scholar 

  11. Wen, X.K., Jiang, J.H., Liu, W., Dai, C.Q.: Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn. 111, 13343–13355 (2023)

    Google Scholar 

  12. Xu, S.Y., Zhou, Q., Liu, W.: Prediction of soliton evolution and equation parameters for NLS–MB equation based on the phPINN algorithm. Nonlinear Dyn. 111, 18401–18417 (2023)

    Google Scholar 

  13. Triki, H., Kruglov, V.I.: Chirped self-similar solitary waves in optical fibers governed with self-frequency shift and varying parameters. Chaos Solitons Fractals 143, 110551 (2021)

    MathSciNet  Google Scholar 

  14. Sakkaravarthi, K., Kanna, T., Mareeswaran, R.B.: Higher-order optical rogue waves in spatially inhomogeneous multimode fiber. Phys. D 435, 133285 (2022)

    MathSciNet  Google Scholar 

  15. Jia, H.P., Bin, Li., Yang, R.C., Tian, J.P.: Diverse composite waves in coherently coupled inhomogeneous fiber systems with external potentials. Nonlinear Dyn. 99, 2987–2999 (2020)

    Google Scholar 

  16. Mahato, D.K., Govindarajan, A., Lakshmanan, M., Sarma, A.K.: Dispersion managed generation of Peregrine solitons and Kuznetsov-Ma breather in an optical fiber. Phys. Lett. A 392, 127134 (2021)

    MathSciNet  Google Scholar 

  17. Nandy, S., Barthakur, A.: Dark-bright soliton interactions in coupled nonautonomous nonlinear Schrödinger equation with complex potentials. Chaos Solitons Fractals 143, 110560 (2021)

    Google Scholar 

  18. Xiong, G., He, J.R., Wang, K.W., Xue, L.: Analytical light bullet solutions in diffraction-decreasing media with inhomogeneous parameters. Results Phys. 43, 106111 (2022)

    Google Scholar 

  19. He, J.R., Deng, W.W., Xue, L.: Snakelike similaritons in combined harmonic-lattice potentials with a varying source. Nonlinear Dyn. 100, 1599–1609 (2020)

    Google Scholar 

  20. Kanna, T., Sheela, A.A., Mareeswaran, R.B.: Spatially modulated two- and three-component Rabi-coupled Gross-Pitaevskii systems. J. Phys. A Math. Theor. 52, 375201 (2019)

    MathSciNet  Google Scholar 

  21. Djoptoussia, C., Tiofack, C.G.L., Alim, Mohamadou, A., Kofané, T.C.: Ultrashort self-similar periodic waves and similaritons in an inhomogeneous optical medium with an external source and modulated coefficients. Nonlinear Dyn. 107, 3833–3846 (2022)

    Google Scholar 

  22. Liu, X.Y., Zeng, J.H.: Overcoming the snaking instability and nucleation of dark solitons innonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity. Chaos Solitons Fractals 156, 111803 (2022)

    Google Scholar 

  23. López, R.C., Sun, G.H., Camacho-Nieto, O., Yáñez-Márquez, C., Dong, S.H.: Analytical traveling-wave solutions to a generalized Gross-Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields. Phys. Lett. A 381, 2978–2985 (2017)

    Google Scholar 

  24. Liu, C., Yang, Z.Y., Zhao, L.C., Xin, G.G., Yang, W.L.: Optical rogue waves generated on Gaussian background beam. Opt. Lett. 39(4), 1057 (2014)

    Google Scholar 

  25. Kundu, N., Ghosh, S., Roy, U.: Quantum simulation of rogue waves in Bose-Einstein condensate: an exact analytical method. Phys. Lett. A 449, 128335 (2022)

    MathSciNet  Google Scholar 

  26. Liu, C., Chen, S.C., Yao, X.K., Akhmediev, N.: Non-degenerate multi-rogue waves and easy ways of their excitation. Phys. D 433, 133192 (2022)

    Google Scholar 

  27. Wang, Y.Y., Chen, L., Dai, C.Q., Zheng, J., Fan, Y.: Exact vector multipole and vortex solitons in the media with spatially modulated cubic-quintic nonlinearity. Nonlinear Dyn. 90, 1269–1275 (2017)

    MathSciNet  Google Scholar 

  28. Zhong, W.P., Belic, M., Malomed, B.A.: Rogue waves in a two-component Manakov system with variable coefficients and an external potential. Phys. Rev. E 92, 053201 (2015)

    MathSciNet  Google Scholar 

  29. Gromova, E.M., Malomed, B.A., Tyutin, V.V.: Vector solitons in coupled nonlinear Schrödinger equations with spatial stimulated scattering and inhomogeneous dispersion. Commun. Nonlinear Sci. 54, 13–20 (2018)

    MathSciNet  Google Scholar 

  30. Chen, Y.X.: Vector peregrine composites on the periodic background in spin–orbit coupled Spin-1 Bose-Einstein condensates. Chaos Solitons Fractals 169, 113251 (2023)

    MathSciNet  Google Scholar 

  31. Zhong, W.P., Chen, L., Belic, M., Petrovic, N.: Controllable parabolic-cylinder optical rogue wave. Phys. Rev. E 90, 043201 (2014)

    Google Scholar 

  32. He, J.R., Li, H.M.: Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials. Phys. Rev. E 83, 066607 (2011)

    Google Scholar 

  33. Wang, S.J., Liu, B., Hu, M.L., Wang, C.Y.: On the efficiency of parabolic self-similar pulse evolution in fiber amplifiers with gain shaping. J. Lightwave Technol. 34(13), 3023–3034 (2016)

    Google Scholar 

  34. Tegin, U., Kakkava, E., Rahmani, B., Psaltis, D., Moser, C.: Spatiotemporal self-similar fiber laser. Optica 6(11), 1412–1415 (2019)

    Google Scholar 

  35. Tiofack, C.G.L., Coulibaly, S., Taki, M., Bièvre, S.D., Dujardin, G.: Kuznetsov-Ma soliton formation in nonlinear Schrödinger equations. Phys. Lett. A 381, 1999–2003 (2017)

    MathSciNet  Google Scholar 

  36. Yang, Z.P., Zhong, W.P., Belic, M., Zhang, Y.Q.: Controllable optical rogue waves via nonlinearity management. Opt. Express 26(6), 7587 (2018)

    Google Scholar 

  37. Duan, L., Yang, Z.Y., Liu, C., Yang, W.L.: Optical rogue wave excitation and modulation on a bright soliton background. Chin. Phys. Lett. 33(1), 010501 (2016)

    Google Scholar 

  38. Wang, M., Tian, B.: In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system. Eur. Phys. J. Plus. 136, 1002 (2021)

    Google Scholar 

  39. Zhong, W.P., Yang, Z.P., Belic, M., Zhong, W.Y.: Controllable optical rogue waves in inhomogeneous media. Phys. Lett. A 453, 128469 (2022)

    MathSciNet  Google Scholar 

  40. Gorza, S.P., Kockaert, P., Emplit, P., Haelterman, M.: Oscillatory neck instability of spatial bright solitons in hyperbolic systems. Phys. Rev. Lett. 102, 134101 (2009)

    Google Scholar 

  41. Erkintalo, M., Hammani, K., Kibler, B., Finot, C., Akhmediev, N., Dudley, J.M., Genty, G.: Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901 (2011)

    Google Scholar 

  42. Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Google Scholar 

  43. Steer, J.N., Borthwick, A.G.L., Onorato, M., Chabchoub, A., Bremer, T.S.V.D.: Hydrodynamic X waves. Phys. Rev. Lett. 123, 184501 (2019)

    Google Scholar 

  44. He, Y.C., Slunyaev, A., Mori, N., Chabchoub, A.: Experimental evidence of nonlinear focusing in standing water waves. Phys. Rev. Lett. 129, 144502 (2022)

    Google Scholar 

  45. Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E 86, 056601 (2012)

    Google Scholar 

  46. Hnat, B., Kolotkov, D.Y., Connell, D.O., Nakariakov, V.M., Rowlands, G.: Nonlinear waves in the terrestrial quasiparallel foreshock. Phys. Rev. Lett. 117, 235102 (2016)

    Google Scholar 

  47. Tiofack, C.G.L., Coulibaly, S., Tak, M., Bievre, S.D., Dujardin, G.: Comb generation using multiple compression points of Peregrine rogue waves in periodically modulated nonlinear Schrödinger equations. Phys. Rev. A 92, 043837 (2015)

    Google Scholar 

  48. Guo, L.H., Chen, P., Tian, J.S.: Peregrine combs and rogue waves on a bright soliton background. Optik 227, 165455 (2021)

    Google Scholar 

  49. Kruglov, V.I., Triki, H.: Periodic and solitary waves generating in optical fiber amplifiers and fiber lasers with distributed parameters. Phys. Lett. A 461, 128644 (2023)

    MathSciNet  Google Scholar 

  50. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press, New York (2007)

    Google Scholar 

  51. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106(20), 204502 (2011)

    Google Scholar 

  52. Chabchoub, A., Hoffmann, N., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2(1), 011015 (2012)

    Google Scholar 

  53. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Solitons Fractals 156, 111719 (2022)

    Google Scholar 

  54. Chakraborty, S., Nandy, S., Barthakur, A.: Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions. Phys. Rev. E 91, 023210 (2015)

    MathSciNet  Google Scholar 

  55. Nandy, S., Barthakur, A.: Pairwise three soliton interactions, soliton logic gates in coupled nonlinear Schrödinger equation with variable coefficients. Commun. Nonlinear Sci. 69, 370–385 (2019)

    MathSciNet  Google Scholar 

  56. Cai, J.X., Bai, C.Z., Zhang, H.H.: Decoupled local/global energy-preserving schemes for the N-coupled nonlinear Schrödinger equations. J. Comput. Phys. 374, 281–299 (2018)

    MathSciNet  Google Scholar 

  57. Qin, Y.H., Zhao, L.C., Yang, Z.Y., Yang, W.L.: Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons. Chaos 28, 013111 (2018)

    MathSciNet  Google Scholar 

  58. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant no: 62305199) and the Natural Science Foundation of Shanxi Province (Grant no: 202203021221016).

Author information

Authors and Affiliations

Authors

Contributions

Kui Huo: Methodology, Software, Data analysis, Writing-original draft. Jing Chen: Writing-review & editing. Heping Jia: Writing-review & editing. Rongcao Yang: Conceptualization, Theoretical analysis, Supervision.

Corresponding author

Correspondence to Rongcao Yang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, K., Chen, J., Jia, H. et al. Spatiotemporally modulated similaritons and composite waves in inhomogeneous system. Nonlinear Dyn 112, 9445–9458 (2024). https://doi.org/10.1007/s11071-024-09508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09508-9

Keywords

Navigation