Skip to main content
Log in

Adaptive fixed-time control for nonlinear systems against time-varying actuator faults

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The adaptive fixed-time control problem for nonlinear systems with time-varying actuator faults is investigated in this paper. A novel adaptive fixed-time controller is designed via combining the Lyapunov stability theory with the backstepping method. It can be adapted to both system uncertainties and unknown actuator faults. Compared with the existing fault-tolerant control schemes subject to actuator faults, the adaptive fixed-time neural networks control scheme can make sure that the tracking error is convergent in a small neighborhood of the origin within a fixed-time interval, and it does not depend on the original states of the system and actuator faults. In light of the control scheme proposed in this paper, the fixed-time stability of the closed-loop system can be guaranteed by theoretical analysis, and a numerical example is provided to verify the effectiveness of obtained theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Rajamani, R., Hedrick, J.: Adaptive observers for active automotive suspensions: theory and experiment. IEEE Trans. Control Syst. Technol. 3(1), 86–93 (1995)

    Google Scholar 

  2. Gu, G., Sparks, A., Banda, S.: An overview of rotating stall and surge control for axial flow compressors. IEEE Trans. Control Syst. Technol. 7(6), 639–647 (1999)

    Google Scholar 

  3. Samara, P., Fouskitakis, G., Sakellariou, J., Fassois, S.: A statistical method for the detection of sensor abrupt faults in aircraft control systems. IEEE Trans. Control Syst. Technol. 16(4), 789–798 (2008)

    Google Scholar 

  4. Stief, A., Ottewill, J., Baranowski, J., Orkisz, M.: A PCA and two-stage Bayesian sensor fusion approach for diagnosing electrical and mechanical faults in induction motors. IEEE Trans. Ind. Elect. 66(12), 9510–9520 (2019)

    Google Scholar 

  5. Veillette, J.: Reliable linear-quadratic state-feedback control. Automatica 31(1), 137–143 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Cheng, J., Wang, Y., Park, J.H., Cao, J., Shi, K.: Static output feedback quantized control for fuzzy Markovian switching singularly perturbed systems with deception attacks. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3052104

    Article  Google Scholar 

  7. Shen, H., Hu, X., Wang, J., Cao, J., Qian, W.: Non-fragile \(\cal{H}_{\infty }\) synchronization for Markov jump singularly perturbed coupled neural networks subject to double-layer switching regulation. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3107607

    Article  Google Scholar 

  8. Mushage, B., Chedjou, J., Kyamakya, K.: Observer-based fuzzy adaptive fault-tolerant nonlinear control for uncertain strict-feedback nonlinear systems with unknown control direction and its applications. Nonlinear Dyn. 88(4), 2553–2575 (2017)

    MATH  Google Scholar 

  9. Chang, J., Guo, Z., Cieslak, J., Henry, D.: Robust fault accommodation strategy of the reentry vehicle: a disturbance estimate-triggered approach. Nonlinear Dyn. 103(3), 2605–2625 (2021)

    Google Scholar 

  10. Du, M., Zhao, D., Yang, M., Chen, H.: Nonlinear extended state observer-based output feedback stabilization control for uncertain nonlinear half-car active suspension systems. Nonlinear Dyn. 100(3), 2483–2503 (2020)

    Google Scholar 

  11. Zhang, Y., Jiang, J.: Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans. Aerosp. Elect. Syst. 39(3), 838–848 (2003)

    Google Scholar 

  12. Mathiyalagan, K.: Fault estimator for parabolic systems with distributed inputs and outputs. In: Recent Advances in Control Problems of Dynamical Systems and Networks, vol 457. Springer, Cham, pp 147–167 (2021)

  13. Zhang, X., Parisini, T., Polycarpou, M.M.: Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach. IEEE Trans. Autom. Control 49(8), 1259–1274 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Mathiyalagan, K., Sangeetha, G.: Finite-time stabilization of nonlinear time delay systems using LQR based sliding mode control. J. Franklin Inst. 356(7), 3948–3964 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Wang, J., Yang, C., Xia, J., Wu, Z., Shen, H.: Observer-based sliding mode control for networked fuzzy singularly perturbed systems under weighted try-once-discard protocol. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3070125

    Article  Google Scholar 

  16. Zhai, D., An, L., Li, J., Zhang, Q.: Adaptive fuzzy fault-tolerant control with guaranteed tracking performance for nonlinear strict-feedback systems. Fuzzy Sets Syst. 302, 82–100 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, D., Shen, Z., Song, Y.: Robust adaptive fault-tolerant control of nonlinear uncertain systems tracking uncertain target trajectory. Inf. Sci. 415, 446–460 (2017)

    MATH  Google Scholar 

  18. Hao, W., Xian, B.: Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology. Nonlinear Dyn. 90(4), 2813–2826 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Niu, J., Chen, F., Tao, G.: Nonlinear fuzzy fault-tolerant control of hypersonic flight vehicle with parametric uncertainty and actuator fault. Nonlinear Dyn. 92(3), 1299–1315 (2018)

    MATH  Google Scholar 

  20. Gao, H., Song, Y., Wen, C.: Backstepping design of adaptive neural fault-tolerant control for MIMO nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2605–2613 (2017)

    MathSciNet  Google Scholar 

  21. Xie, C., Yang, G.: Decentralized adaptive fault-tolerant control for large-scale systems with external disturbances and actuator faults. Automatica 85, 83–90 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Ma, J., Park, J., Xu, S.: Global adaptive finite-time control for uncertain nonlinear systems with actuator faults and unknown control directions. Nonlinear Dyn. 97(4), 2533–2545 (2019)

    MATH  Google Scholar 

  23. Xu, Q., Wang, Z., Zhen, Z.: Adaptive neural network finite time control for quadrotor UAV with unknown input saturation. Nonlinear Dyn. 98(3), 1973–1998 (2019)

    MATH  Google Scholar 

  24. Wang, L., Wang, H., Liu, P.X.: Adaptive fuzzy finite-time control of stochastic nonlinear systems with actuator faults. Nonlinear Dyn. 104(1), 523–536 (2021)

    Google Scholar 

  25. Bhat, S., Bernstein, D.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Ding, S., Mei, K., Yu, X.: Adaptive second-order sliding mode control: a Lyapunov approach. IEEE Trans. Autom. Control (2021). https://doi.org/10.1109/TAC.2021.3115447

    Article  Google Scholar 

  27. Du, H., Wen, G., Wu, D., Cheng, Y., Lu, J.: Distributed fixed-time consensus for nonlinear heterogeneous multi-agent systems. Automatica 113, 1–11 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Wei, W., Zhang, W.: Finite-time adaptive switched gain control for non-strict feedback nonlinear systems via nonlinear command filter. Nonlinear Dyn. 100, 3485–3496 (2020)

    Google Scholar 

  29. Cai, M., Xiang, Z., Guo, J.: Adaptive finite-time control for uncertain nonlinear systems with application to mechanical systems. Nonlinear Dyn. 84(2), 943–958 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Sakthivel, R., Joby, M., Wang, C., Kaviarasan, B.: Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults. Appl. Math. Comput. 332, 425–436 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Xu, P., Li, Y., Tong, S.: Fuzzy adaptive finite time fault-tolerant control for multi-input and multi-output nonlinear systems with actuator faults. Int. J. Control Autom. 17(7), 1655–1665 (2019)

    Google Scholar 

  32. Zhou, X., Gao, C., Li, Z.-G., Ouyang, X.-Y., Wu, L.-B.: Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation. Nonlinear Dyn. 103(2), 1645–1661 (2021)

    Google Scholar 

  33. Esmaeilzadeh, S.M., Golestani, M., Mobayen, S.: Chattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraft. Int. J. Control Autom. 19(2), 767–776 (2021)

    MATH  Google Scholar 

  34. Chen, Z., Wang, Y., Sun, M., Sun, Q.: Convergence and stability analysis of active disturbance rejection control for first-order nonlinear dynamic systems. Trans. Inst. Meas. Control 41(7), 2064–2076 (2019)

    Google Scholar 

  35. Hu, G.: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61(1), 134–142 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Boyan, J., Qinglei, H., Michael, F.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Control Syst. Technol. 24(5), 1892–1898 (2016)

    Google Scholar 

  37. Boyan, J., Qinglei, H., Michael, F.: Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness. IEEE Trans. Aerosp. Electron. Syst. 52(4), 1576–1586 (2016)

    Google Scholar 

  38. Choi, J.Y., Farrell, J.A.: Adaptive observer backstepping control using neural networks. IEEE Trans. Neural Netw. 12(5), 1103–1112 (2001)

    Google Scholar 

  39. Wang, F., Zhang, X.: Adaptive finite time control of nonlinear systems under time-varying actuator failures. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1845–1852 (2019)

    Google Scholar 

  40. Kale, M.: A: Chipperfield, Stabilized MPC formulations for robust reconfigurable flight control. Control. Eng. Pract. 13(6), 771–788 (2005)

    Google Scholar 

  41. Corradini, M.L., Orlando, G.: Actuator failure identification and compensation through sliding modes. IEEE Trans. Control Syst. Technol. 15(1), 184–190 (2007)

    Google Scholar 

  42. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Qian, C., Lin, W.: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42(3), 185–200 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Wang, C., Lin, Y.: Decentralized adaptive tracking control for a class of interconnected nonlinear timevarying systems. Automatica 54, 16–24 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87(2), 363–370 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work of H. Shen was supported by the NNSFC under Grant Nos. 61873002, 61703004 and 61973199. Also, the work of J.H. Park was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (Ministry of Science and ICT) (No. 2019R1A5A808029011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju H. Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (eps 0 KB)

Appendix

Appendix

Consider the Lyapunov function as follows:

$$\begin{aligned} V_{m}=\frac{1}{2}z_{m}^{2}+\frac{1}{2b_{m}}\tilde{\theta }_{m}^{2}. \end{aligned}$$
(49)

According to the definition of \(\tilde{\theta }_{i}\), one can get the following inequality:

$$\begin{aligned} \tilde{\theta }_{i}\hat{\theta }_{i}=\tilde{\theta }_{i}\left( \theta _{i}- \tilde{\theta }_{i}\right) \le -\frac{1}{2}\tilde{\theta }_{i}^{2}+\frac{1}{2} \theta _{i}^{2} \end{aligned}$$
(50)

and motivated by the literature [46], just to facilitate the description of the binomial theorem \(\left( \theta _{i}-\tilde{\theta } _{i}\right) ^{3}\), \(p=3/4\) and \(q=2\) are used to demonstrate stability. Based on (49), (50), Lemmas 5 and 6, then the time derivative of \(V_{m}\) is

$$\begin{aligned} \dot{V}_{m}\le & {} \sum _{i=1}^{m}\frac{\bar{\psi }_{i}}{b_{i}}\tilde{\theta } _{i}\hat{\theta }_{i}+\sum _{i=1}^{m}\frac{c_{i}}{b_{i}^{2}}\tilde{\theta }_{i} \hat{\theta }_{i}^{3}-\sum _{i=1}^{m}c_{i,1}\left( \frac{z_{i}^{2}}{2}\right) ^{\frac{3}{4}}\nonumber \\&\qquad -\sum _{i=1}^{m}c_{i,2}\left( \frac{z_{i}^{2}}{2}\right) ^{2}+\Delta _{m} \nonumber \\\le & {} \sum _{i=1}^{m}\frac{\bar{\psi }_{i}}{b_{i}}\tilde{\theta }_{i}\hat{ \theta }_{i}+\sum _{i=1}^{m}\frac{c_{i}}{b_{i}^{2}}\tilde{\theta }_{i}\hat{ \theta }_{i}^{3}-\sum _{i=1}^{m}c_{i,1}\left( \frac{z_{i}^{2}}{2}\right) ^{ \frac{3}{4}}\nonumber \\&\qquad -\frac{\bar{\varrho }_{2}}{m}\left( \sum _{i=1}^{m}\frac{z_{i}^{2} }{2}\right) ^{2}+\Delta _{m} \nonumber \\\le & {} -\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{z_{i}^{2}}{2}\right) ^{ \frac{3}{4}}-\frac{\bar{\varrho }_{2}}{m}\left( \sum _{i=1}^{m}\frac{z_{i}^{2} }{2}\right) ^{2}\nonumber \\&\qquad -\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{\tilde{\theta } _{i}^{2}}{2b_{i}}\right) ^{\frac{3}{4}}+\left( \sum _{i=1}^{m}\frac{\bar{\psi } _{i}\tilde{\theta }_{i}^{2}}{2b_{i}}\right) ^{\frac{3}{4}} \nonumber \\&-\sum _{i=1}^{m}\frac{\bar{\psi }_{i}\tilde{\theta }_{i}^{2}}{2b_{i}} +\sum _{i=1}^{m}\frac{\bar{\psi }_{i}\theta _{i}^{2}}{2b_{i}}+\sum _{i=1}^{m} \frac{c_{i}}{b_{i}^{2}}\tilde{\theta }_{i}\hat{\theta }_{i}^{3}+\Delta _{m}. \nonumber \\ \end{aligned}$$
(51)

where \(\bar{\varrho }_{1}=\min \left( c_{1,1},\ldots ,c_{m,1},\bar{\psi }_{1},\ldots , \bar{\psi }_{m}\right) \), \(\bar{\varrho }_{2}=\min \left( c_{1,2},\ldots ,c_{m,2}\right) \).

Applying Lemma 2 to the term \(\left( \frac{\bar{\psi }_{i}\tilde{\theta } _{i}^{2}}{2b_{i}}\right) ^{\gamma }\), we can obtain that

$$\begin{aligned} \left( \frac{\bar{\psi }_{i}\tilde{\theta }_{i}^{2}}{2b_{i}}\right) ^{\gamma }\le \left( 1-\gamma \right) \gamma ^{\frac{\gamma }{1-\gamma }}+\frac{\bar{ \psi }_{i}\tilde{\theta }_{i}^{2}}{2b_{i}}. \end{aligned}$$
(52)

Combining (52) and (51), one has

$$\begin{aligned} \dot{V}_{m}\le -\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{z_{i}^{2}}{2} \right) ^{\frac{3}{4}}-\frac{\bar{\varrho }_{2}}{m}\left( \sum _{i=1}^{m}\frac{ z_{i}^{2}}{2}\right) ^{2}\nonumber \\\qquad -\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{\tilde{ \theta }_{i}^{2}}{2b_{i}}\right) ^{\frac{3}{4}}+\sum _{i=1}^{m}\frac{c_{i} \tilde{\theta }_{i}\hat{\theta }_{i}^{3}}{b_{i}^{2}}+\tilde{\nu } \end{aligned}$$
(53)

where \(\tilde{\nu }=\sum _{i=1}^{m}\frac{\bar{\psi }_{i}\theta _{i}^{2}}{b_{i}} +\left( 1-\gamma \right) \gamma ^{\frac{\gamma }{1-\gamma }}+\Delta _{m}\). Similar to (50), (53) can be expressed as

$$\begin{aligned} \dot{V}_{m}\le & {} \sum _{i=1}^{m}\frac{c_{i}\theta _{i}^{3}\tilde{\theta }_{i} }{b_{i}^{2}}-\sum _{i=1}^{m}\frac{c_{i}\tilde{\theta }_{i}^{4}}{b_{i}^{2}} -\sum _{i=1}^{m}\frac{3c_{i}\theta _{i}^{2}\tilde{\theta }_{i}^{2}}{b_{i}^{2}}\nonumber \\&\qquad +\sum _{i=1}^{m}\frac{3c_{i}\theta _{i}\tilde{\theta }_{i}^{3}}{b_{i}^{2}} \nonumber \\&-\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{z_{i}^{2}}{2}\right) ^{\frac{3 }{4}}-\frac{\bar{\varrho }_{2}}{m}\left( \sum _{i=1}^{m}\frac{z_{i}^{2}}{2} \right) ^{2}\nonumber \\&\qquad -\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{\tilde{\theta } _{i}^{2}}{2b_{i}}\right) ^{\frac{3}{4}}+\tilde{\nu }. \end{aligned}$$
(54)

Applying Young’s inequality [46] to terms \(\sum _{i=1}^{m} \frac{3c_{i}\theta _{i}\tilde{\theta }_{i}^{3}}{b_{i}^{2}}\) and \( \sum _{i=1}^{m}\frac{c_{i}\theta _{i}^{3}\tilde{\theta }_{i}}{b_{i}^{2}}\), one has

$$\begin{aligned}&\sum _{i=1}^{m}\frac{3c_{i}\theta _{i}\tilde{\theta }_{i}^{3}}{b_{i}^{2}}\le \sum _{i=1}^{m}\frac{3c_{i}\theta _{i}^{4}}{4\iota ^{4}b_{i}^{2}} +\sum _{i=1}^{m}\frac{9c_{i}\iota ^{\frac{4}{3}}\tilde{\theta }_{i}^{4}}{ 4b_{i}^{2}} \end{aligned}$$
(55)
$$\begin{aligned}&\sum _{i=1}^{m}\frac{c_{i}\theta _{i}^{3}\tilde{\theta }_{i}}{b_{i}^{2}}\le \sum _{i=1}^{m}\frac{c_{i}\theta _{i}^{4}}{12b_{i}^{2}}+\sum _{i=1}^{m}\frac{ 3c_{i}\theta _{i}^{2}\tilde{\theta }_{i}^{2}}{b_{i}^{2}} \end{aligned}$$
(56)

Combining (55), (56) with (54) yields

$$\begin{aligned} \dot{V}_{m}\le & {} -\frac{\bar{\varrho }_{2}}{m}\left( \sum _{i=1}^{m}\frac{ z_{i}^{2}}{2}\right) ^{2}-\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{ z_{i}^{2}}{2}\right) ^{\frac{3}{4}}\nonumber \\&\qquad -\sum _{i=1}^{m}\left( 4c_{i}-9c_{i}\iota ^{\frac{4}{3}}\right) \left( \frac{\tilde{\theta }_{i}^{2}}{2b_{i}}\right) ^{2} \nonumber \\&-\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{\tilde{\theta }_{i}^{2}}{2b_{i} }\right) ^{\frac{3}{4}}+\nu \end{aligned}$$
(57)

where \(\nu =\tilde{\nu }+\sum _{i=1}^{m}\frac{3c_{i}\theta _{i}^{4}}{4\iota ^{4}b_{i}^{2}}+\sum _{i=1}^{m}\frac{c_{i}\theta _{i}^{4}}{12b_{i}^{2}}\). Moreover, (57) can be rewritten as:

$$\begin{aligned} \dot{V}_{m}\le -\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{z_{i}^{2}}{2} \right) ^{\frac{3}{4}}-\bar{\varrho }_{1}\left( \sum _{i=1}^{m}\frac{\tilde{ \theta }_{i}^{2}}{2b_{i}}\right) ^{\frac{3}{4}}\nonumber \\\qquad -\hat{\varrho }_{2}\left( \sum _{i=1}^{m}\frac{\tilde{\theta }_{i}^{2}}{2b_{i}}\right) ^{2}-\hat{\varrho } _{2}\left( \sum _{i=1}^{m}\frac{z_{i}^{2}}{2}\right) ^{2}+\nu \end{aligned}$$
(58)

where \(\hat{\varrho }_{2}=\min \left( \left( 4-9\iota ^{\frac{4}{3}}\right) c_{i},\frac{\bar{\varrho }_{2}}{m}\right) \); we can get

$$\begin{aligned} \dot{V}_{m}\le & {} -\bar{\varrho }_{1}\left( \left( \sum _{i=1}^{m}\frac{ z_{i}^{2}}{2}\right) ^{\frac{3}{4}}+\left( \sum _{i=1}^{m}\frac{\tilde{\theta } _{i}^{2}}{2b_{i}}\right) ^{\frac{3}{4}}\right) \nonumber \\&-\hat{\varrho }_{2}\left( \left( \sum _{i=1}^{m}\frac{z_{i}^{2}}{2}\right) ^{2}+\left( \sum _{i=1}^{m}\frac{\tilde{\theta }_{i}^{2}}{2b_{i}}\right) ^{2}\right) +\nu . \end{aligned}$$
(59)

Applying Lemmas 4 and 5 to \(\dot{V}_{m}\), one can get

$$\begin{aligned} \dot{V}_{m}\le -\varrho _{1}V_{m}^{\frac{3}{4}}-\varrho _{2}V_{m}^{2}+\nu \end{aligned}$$
(60)

where \(\varrho _{2}=\hat{\varrho }_{2},\varrho _{1}=\bar{\varrho }_{1}\).

At the same time, it follows from (60) that

$$\begin{aligned} \dot{V}_{m}\le -\varrho _{2}V_{m}^{\frac{3}{4}}-\varpi \varrho _{1}V_{m}^{2}-(1-\varpi )\varrho _{1}V_{m}^{2}+\nu \end{aligned}$$
(61)

where \(0<\varpi <1\). If \(\nu -(1-\varpi )\varrho _{1}V_{m}^{2}<0\), by Lemma 1, one can obtain

$$\begin{aligned} T\le \frac{4}{\varrho _{1}\varpi }+\frac{1}{\varrho _{2}} \end{aligned}$$
(62)

It also follows from (60) that

$$\begin{aligned} \dot{V}_{m}\le -\varpi \varrho _{2}V_{m}^{\frac{3}{4}}-\varrho _{1}V_{m}^{2}-(1-\varpi )\varrho _{2}V_{m}^{\frac{3}{4}}+\nu \end{aligned}$$
(63)

where \(0<\varpi <1\). If \(\nu -(1-\varpi )\varrho _{2}V_{m}^{2}<0\). By applying Lemma 1, it follows

$$\begin{aligned} T\le \frac{1}{\varrho _{2}\varpi }+\frac{4}{\varrho _{1}}. \end{aligned}$$
(64)

By using Lemma 1, that the system is FTS can be obtained and one can get

$$\begin{aligned}&V\left( x\right) \le \min \left\{ \varrho _{1}^{-\frac{1}{p}}\left( \frac{ \nu }{1-\varpi }\right) ^{\frac{1}{p}},\varrho _{2}^{-\frac{1}{p}}\left( \frac{\nu }{1-\varpi }\right) ^{\frac{1}{q}}\right\} . \nonumber \\ \end{aligned}$$
(65)
$$\begin{aligned}&T_{\Phi }\le \frac{4}{\varrho _{1}\varpi }+\frac{1}{\varrho _{2}\varpi } \end{aligned}$$
(66)

According to the definition of \(V\left( x\right) \), it can be concluded that, for \(\Xi \triangleq (2\varrho _{1}^{-\frac{1}{2p}}(\frac{\nu }{ 1-\varpi })^{\frac{1}{2p}})\), \(\mid z_{j}\mid \le \Xi \), and \(\mid y-y_{d}\mid \le \Xi \). In other words, the output can track the desired signal \(y_{d}\) to a small neighborhood in fixed time. On the basis of (60), it is not hard to derive that \(\dot{V}_{m}<0\), when \(V_{m}^{2}\ge \nu /\varrho _{2}\). Obviously, it can be observed that all the state variables \(x_{j}\) are bounded. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, Y., Wang, J., Park, J.H. et al. Adaptive fixed-time control for nonlinear systems against time-varying actuator faults. Nonlinear Dyn 107, 3629–3640 (2022). https://doi.org/10.1007/s11071-021-07171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07171-y

Keywords

Navigation