Skip to main content
Log in

Estimation on complexity of time series using generalized distance components statistics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose the generalized distance components (GDISCO) approach that enables us to estimate the complexity of time series from the perspectives of time and space. This approach is based on the rotational invariance of energy distance in high-dimensional space. Compared with the existing complexity measures, the main innovation of the GDISCO method is that it not only gives the total complexity, but also calculates the complexity within and between the components of pooled samples. We verify the effectiveness of this method for studying and dividing the spatial complexity of periodic, chaotic and stochastic processes and some common probability distribution through simulated data. The results illustrate that the variation of GDISCO is monotonic and consistent as the change of parameters. The multivariate data are also experimented, it mainly confirms that the between-sample dispersion statistic of GDISCO can evaluate the similarity among the structure of the components of pooled samples. Then, we apply this approach to study physiological RR internal time series to detect the efficacy of drugs for the treatment of suppress arrhythmias in survivors of myocardial infarction. Besides, it is used to analyze the properties and differences of Chinese and American stock markets. It all shows excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The financial dataset generated during and analyzed during the current study are available in the finance of yahoo, [http://finance.yahoo.com/]. The CAST RR interval dataset is publicly available in the Physionet, [https://physionet.org/].

References

  1. Martin, M., Plastino, A., Rosso, O.: Statistical complexity and disequilibrium. Phys. Lett. A 311, 126–132 (2003)

    Article  MathSciNet  Google Scholar 

  2. He, M., Xu, W., Sun, Z.: Dynamical complexity and stochastic resonance in a bistable system with time delay. Nonlinear Dyn. 79, 1787–1795 (2014)

    Article  MathSciNet  Google Scholar 

  3. He, M., Xu, W., Sun, Z., Jia, W.: Characterizing stochastic resonance in coupled bistable system with poisson white noises via statistical complexity measures. Nonlinear Dyn. 88, 1163–1171 (2017)

    Article  MathSciNet  Google Scholar 

  4. Wu, Y.T., Shyu, K.K., Chen, T.R., Guo, W.Y.: Using three-dimensional fractal dimension to analyze the complexity of fetal cortical surface from magnetic resonance images. Nonlinear Dyn. 58, 745–752 (2009)

    Article  Google Scholar 

  5. Huang, M., Sun, Z., Donner, R., Zhang, J., Guan, S., Zou, Y.: Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks. Chaos 31, 033127 (2021)

    Article  MathSciNet  Google Scholar 

  6. Altan, A., Hacioglu, R.: Model predictive control of three-axis gimbal system mounted on uav for real-time target tracking under external disturbances. Mech. Syst. Signal Proc. 138, 1–23 (2020)

    Article  Google Scholar 

  7. Altan, A., Aslan, O., Hacioglu, R.: Real-time control based on narx neural network of hexarotor uav with load transporting system for path tracking. In: IEEE 6th International Conference on Control Engineering and Information Technology, pp. 1–6 (2018)

  8. Belge, E., KABA, H., Parlak, A., Altan, A., Hacioglu, R.: Estimation of small unmanned aerial vehicle lateral dynamic model with system identification approaches. Balk. J. Electr. Comput. Eng. 8, 121–126 (2020)

    Article  Google Scholar 

  9. Altan, A.: Performance of metaheuristic optimization algorithms based on swarm intelligence in attitude and altitude control of unmanned aerial vehicle for path following. In: 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (2020)

  10. Shiner, J.S., Davison, M., Landsberg, P.T.: Simple measure for complexity. Phys. Rev. E 59, 1459–1464 (1999)

    Article  Google Scholar 

  11. Shiner, J.S., Davison, M., Landsberg, P.T.: Reply to comments on simple measure for complexity. Phys. Rev. E 62, 3000–3003 (2000)

    Article  Google Scholar 

  12. Binder, P., Perry, N.: Comment ii on simple measure for complexity. Phys. Rev. E 62, 2998–2999 (2000)

    Article  Google Scholar 

  13. Shiner, J.S., Davison, M., Landsberg, P.T.: Reply to comments on simple measure for complexity. Phys. Rev. E 62, 3000–3003 (2000)

    Article  Google Scholar 

  14. Löpez-Ruiz, R., Mancini, H., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209(5), 321–326 (1995)

    Article  Google Scholar 

  15. Feldman, D.P., Crutchfield, J.P.: Measures of statistical complexity: Why? Phys. Lett. A 238(4), 244–252 (1998)

    Article  MathSciNet  Google Scholar 

  16. Lamberti, P., Martin, M., Plastino, A., Rosso, O.: Intensive entropic non-triviality measure. Phys. A 334(1), 119–131 (2004)

    Article  MathSciNet  Google Scholar 

  17. Richman, J., Lake, D., Moorman, J.: Sample entropy. Methods Enzymol. 384, 172–184 (2004)

    Article  Google Scholar 

  18. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  19. Pincus, S.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)

    Article  MathSciNet  Google Scholar 

  20. Rostaghi, M., Azami, H.: Dispersion entropy: a measure for time series analysis. IEEE Signal Process. Lett. 23, 610–614 (2016)

    Article  Google Scholar 

  21. Manis, G., Aktaruzzaman, M., Sassi, R.: Bubble entropy: an entropy almost free of parameters. IEEE Trans. Biomed. Eng. 64, 2711–2718 (2017)

    Article  Google Scholar 

  22. Szekely, G.: E-statistics: the energy of statistical samples. Bowling Green State University, Department of Mathematics and Statistics Technical Report, Tech. Rep. (2002)

  23. Székely, G.J., Rizzo, M.L.: Energy statistics: a class of statistics based on distances. J. Stat. Plan. Infer. 143(8), 1249–1272 (2013)

    Article  MathSciNet  Google Scholar 

  24. Rizzo, M., Szekely, G.: Energy distance. Wiley Interdiscip. Rev. Comput. Stat. 8, 27–38 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhang, S., Dang, X., Nguyen, D., Wilkins, D., Chen, Y.: Estimating feature-label dependence using gini distance statistics. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1947–1963 (2021)

    Article  Google Scholar 

  26. Szekely, G., Rizzo, M.: A new test for multivariate normality. J. Multivar. Anal. 93, 58–80 (2005)

    Article  MathSciNet  Google Scholar 

  27. Rizzo, M.: New goodness-of-fit tests for pareto distributions. Astin Bull. 39, 691–715 (2009)

    Article  MathSciNet  Google Scholar 

  28. Bakshaev, A., Rudzkis, R.: Goodness-of-fit tests based on the empirical characteristic function. Lith. Math. J. 57, 1–16 (2017)

  29. Rizzo, M.: A new rotation invariant goodness-of-fit test. Dissertation, Bowling Green State University (2002)

  30. Baringhaus, L., Franz, C.: On a new multivariate two-sample test. J. Multivar. Anal. 88, 190–206 (2004)

    Article  MathSciNet  Google Scholar 

  31. Szekely, G., Rizzo, M.: Testing for equal distributions in high dimension. Energy Data (2004)

  32. Feuerverger, A.: A consistent test for bivariate dependence. Int. Stat. Rev. 61, 419–433 (1993)

    Article  MathSciNet  Google Scholar 

  33. Szekely, G., Rizzo, M., Bakirov, N.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35, 2769–2794 (2007)

    Article  MathSciNet  Google Scholar 

  34. Szekely, G., Rizzo, M.: Brownian distance covariance. Ann. Appl. Stat. 3, 1236–1265 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Kim, A., Marzban, C., Percival, D., Stuetzle, W.: Using labeled data to evaluate change detectors in a multivariate streaming environment. Signal Process. 89, 2529–2536 (2009)

    Article  Google Scholar 

  36. Matteson, D., James, N.: A nonparametric approach for multiple change point analysis of multivariate data. J. Am. Stat. Assoc. 109, 334–345 (2014)

    Article  MathSciNet  Google Scholar 

  37. Rizzo, M., Szekely, G.: Disco analysis: a nonparametric extension of analysis of variance. Ann. Appl. Stat. 4, 1034–1055 (2010)

    Article  MathSciNet  Google Scholar 

  38. Xiao, S., Zhenzhou, L., Wang, P.: Multivariate global sensitivity analysis based on distance components decomposition. Risk Anal. 38, 2703–2721 (2018)

    Article  Google Scholar 

  39. Schilling, K., Oberdick, J., Schilling, R.: Toward an efficient and integrative analysis of limited-choice behavioral experiments. J. Neurosci. 32, 12651–6 (2012)

    Article  Google Scholar 

  40. Mandelbrot, B., Ness, J.: Fractional brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  Google Scholar 

  41. Wu, D., Xiao, Y.: Dimensional properties of fractional brownian motion. Acta Math. Sin. Engl. Ser. 23, 613–622 (2007)

    Article  MathSciNet  Google Scholar 

  42. Coskun, B., Vardar Acar, C., Demirtas, H.: A study on the discretization of fractional brownian motion. In: International conference of numerical analysis and applied mathematics (ICNAAM) 2019, vol. 2293, p. 180013 (2020)

  43. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  44. Stein, P.K., Kleiger, R.E., Domitrovich, P.P., Schechtman, K.B., Rottman, J.N.: Clinical and demographic determinants of heart rate variability in patients post myocardial infarction: insights from the cardiac arrhythmia suppression trial (cast). Clin. Cardiol. 23(3), 187–194 (2000)

Download references

Acknowledgements

The financial supports from the funds of the Fundamental Research Funds for the Central Universities (2021YJS166) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shang, P. Estimation on complexity of time series using generalized distance components statistics. Nonlinear Dyn 107, 3709–3727 (2022). https://doi.org/10.1007/s11071-021-07168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07168-7

Keywords

Navigation