Skip to main content
Log in

Characterizing stochastic resonance in coupled bistable system with Poisson white noises via statistical complexity measures

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper mainly analyzes the role of Poisson white noise on stochastic resonance in two coupled bistable systems. Statistical complexity and normalized Shannon entropy are used to quantify stochastic resonance behavior induced by modulating the parameters of Poisson white noise and given system. Maximum of statistical complexity and minimum of normalized Shannon entropy for an optimal noise level are considered as a symbol of the occurrence of stochastic resonance. The numerical results demonstrate that stochastic resonance behavior becomes more pronounced when increasing the mean arrival rate of Poisson white noise with fixed noise intensity. Furthermore, one can also find that the dynamical complexity of given system excited by Poisson white noise approaches the one with Gaussian white noise in the condition of same noise intensity when the mean arrival rate of Poisson white noise tends to infinity. Besides, the influences of coupling strength and damping parameter on stochastic resonance are investigated by means of statistical complexity and normalized Shannon entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 14(11), L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  2. Fauve, S., Heslot, F.: Stochastic resonance in a bistable system. Phys. Lett. A 97(1–2), 5–7 (1983)

    Article  Google Scholar 

  3. Iannelli, J.M., Yariv, A., Chen, T.R., Zhuang, Y.H.: Stochastic resonance in a semiconductor distributed-feedback laser. Appl. Phys. Lett. 65(16), 1983–1985 (1994)

    Article  Google Scholar 

  4. Guderian, A., Dechert, G., Zeyer, K., Schneider, F.: Stochastic resonance in chemistry. 1. The Belousov-Zhabotinsky reaction. J. Phys. Chem. 100(11), 4437–4441 (1996)

    Article  Google Scholar 

  5. Gosak, M., Perc, M., Kralj, S.: Stochastic resonance in a locally excited system of bistable oscillators. Eur. Phys. J. B 80(4), 519–528 (2011)

    Article  Google Scholar 

  6. Abbaspour, H., Trebaol, S., Morier-Genoud, F., Portella-Oberli, M.T., Deveaud, B.: Stochastic resonance in collective exciton-polariton excitations inside a GaAs microcavity. Phys. Rev. Lett. 113(5), 057401 (2014)

    Article  Google Scholar 

  7. Perc, M., Gosak, M.: Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New J. Phys. 10(5), 053008 (2008)

    Article  Google Scholar 

  8. Tang, J., Jia, Y., Yi, M., Ma, J., Li, J.R.: Multiplicative-noise-induced coherence resonance via two different mechanisms in bistable neural models. Phys. Rev. E 77(6), 061905 (2008)

    Article  Google Scholar 

  9. Douglas, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information-transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365(6444), 337–340 (1993)

    Article  Google Scholar 

  10. Mcnamara, B., Wiesenfeld, K.: Theory of stochastic resonance. Phys. Rev. A 39(9), 4854–4869 (1989)

    Article  Google Scholar 

  11. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–288 (1998)

    Article  Google Scholar 

  12. Dybiec, B., Gudowska-Nowak, E.: Stochastic resonance: the role of alpha-stable noises. Acta Phys. Pol. B 37(5), 1479–1490 (2006)

    Google Scholar 

  13. Zhou, T., Moss, F., Jung, P.: Escape-time distributions of a periodically modulated bistable system with noise. Phys. Rev. A 42(6), 3161–3169 (1990)

    Article  Google Scholar 

  14. Dykman, M.I., Haken, H., Hu, G., Luchinsky, D.G., Mannella, R., McClintock, P.V.E., Ning, C.Z., Stein, N.D., Stocks, N.G.: Linear response theory in stochastic resonance. Phys. Lett. A 180(4–5), 332–336 (1993)

    Article  Google Scholar 

  15. Sun, Z.K., Yang, X.L., Xu, W.: Resonance dynamics evoked via noise recycling procedure. Phys. Rev. E 85(6), 061125 (2012)

    Article  Google Scholar 

  16. Sun, Z.K., Yang, X.L., Xiao, Y.Z., Xu, W.: Modulating resonance behaviors by noise recycling in bistable systems with time delay. Chaos 24(2), 023126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rosso, O.A., Masoller, C.: Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. Phys. Rev. E 79(4), 040106(R)1–040106(R)4 (2009)

    Article  Google Scholar 

  18. Rosso, O.A., Masoller, C.: Detecting and quantifying temporal correlations in stochastic resonance via information theory measures. Eur. Phys. J. B 69(1), 37–43 (2009)

    Article  Google Scholar 

  19. Tung, C.C.: Random response of highway bridges to vehicle loads. J. Eng. Mech. 93, 79–94 (1967)

    Google Scholar 

  20. Lin, Y.K.: Application of non-stationary shot noise in the study of system response to non-stationary excitations. ASME J. Appl. Mech. 30, 555–558 (1963)

  21. Roberts, J.B.: System responses to random impulses. J. Sound Vib. 24(1), 23–34 (1972)

  22. Wu, Y., Zhu, W.Q.: Stationary response of MDOF dissipated Hamiltonian systems to Poisson white noise. ASME J. Appl. Mech. 75(4), 044502 (2008)

    Article  Google Scholar 

  23. Jia, W.T., Zhu, W.Q.: Stochastic averaging of quasi-integrable and non-resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Nonlinear Dyn. 76(2), 1271–1289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grigoriu, M., Samorodnitsky, G.: Stability of the trivial solution for linear stochastic differential equations with Poisson white noise. Phys. A 37(38), 8913–8928 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Köylüoğlu, H., Nielsen, S., Iwankiewicz, R.: Reliability of nonlinear oscillators subject to Poisson driven impulses. J. Sound Vib. 176(1), 19–33 (1994)

    Article  MATH  Google Scholar 

  26. Jia, W.T., Zhu, W.Q.: Stochastic averaging of quasi-partially integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Phys. A 398, 125–144 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jung, P., Behn, U., Pantazelou, E., Moss, F.: Collective response in globally coupled bistable systems. Phys. Rev. A 46(4), R1709–R1712 (1992)

    Article  Google Scholar 

  28. Bulsara, A.R., Schmera, G.: Stochastic resonance in globally coupled nonlinear oscillators. Phys. Rev. E 47(5), 3734–3737 (1993)

    Article  Google Scholar 

  29. Neiman, A., Schimansky-Geier, L.: Stochastic resonance in two coupled bistable systems. Phys. Lett. A 197(5–6), 379–386 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gandhimathi, V.M., Rajasekar, S., Kurths, J.: Vibrational and stochastic resonance in two coupled overdamped anharmonic oscillators. Phys. Lett. A 360(2), 279–286 (2006)

    Article  MATH  Google Scholar 

  31. Kenfack, A., Singh, Kamal, P.: stochastic resonance in coupled underdamped bistable systems. Phys. Rev. E 82(4), 046224 (2010)

    Article  Google Scholar 

  32. Yang, T.T., Zhang, H.Q., Xu, Y., Xu, W.: stochastic resonance in coupled underdamped bistable systems driven by symmetric trichotomous noises. Int. J. Nonlinear Mech. 67, 42–47 (2014)

    Article  Google Scholar 

  33. Di Paola, M., Falsone, G.: Itô and Stratonovich integrals for Delta-correlated processes. Probab. Eng. Mech. 8, 197–208 (1993)

    Article  Google Scholar 

  34. López-Ruiz, R., Mancini, H.L., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209(5–6), 321–326 (1995)

    Article  Google Scholar 

  35. He, M.J., Xu, W., Sun, Z.K.: Dynamical complexity and stochastic resonance in a bistable system with time delay. Nonlinear Dyn. 79(3), 1787–1795 (2015)

    Article  MathSciNet  Google Scholar 

  36. Bandt, C., Pompe, B.: Permutation entropy—a natural complexity measure for time series. Phys. Rev. Lett 88(17), 174102 (2002)

    Article  Google Scholar 

  37. Lamberti, P.W., Martin, M.T., Plastino, A., Rosso, O.A.: Intensive entropy non-triviality measure. Phys. A 334(1–2), 119–131 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grants No. 11172233, 11272258, 11502199, 11602184) and the Fundamental Research Funds for the Central Universities (Grant No. JB160705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Xu, W., Sun, Z. et al. Characterizing stochastic resonance in coupled bistable system with Poisson white noises via statistical complexity measures. Nonlinear Dyn 88, 1163–1171 (2017). https://doi.org/10.1007/s11071-016-3302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3302-3

Keywords

Navigation