Skip to main content
Log in

Virtual target approach-based optimal guidance law with both impact time and terminal angle constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To attack a stationary target with both impact time and angle constraints, a novel two-stage guidance strategy is proposed based on the virtual target approach. A moving virtual target that satisfies both impact time and angle requirements is introduced, which substantially simplifies the problem without estimating the time-to-go and its feasibility has been theoretically proved in this paper. For the first stage, taking into account the nonlinear engagement dynamics, an energy optimal closed-loop guidance law is derived to intercept the virtual target with zero impact angle, which is in an analytical form so it can be implemented without any numerical algorithms. Then for the second stage, the proportional navigation guidance law is employed to enhance the robustness against potential disturbances, which also offers the property that the overall two-stage guidance law is almost-smooth at the switching time. The proposed methodology is capable to accommodate the all-aspect attacking scenario with arbitrary initial conditions and arbitrary terminal impact constraints. At last, the effect of navigation coefficients as well as the performance of the proposed guidance law in different engagement scenarios is assessed by several numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

The code that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ryoo, C.-K., Cho, H., Tahk, M.-J.: Optimal guidance laws with terminal impact angle constraint. J. Guidance Control Dyn. 28(4), 724–732 (2005). https://doi.org/10.2514/1.8392

    Article  Google Scholar 

  2. Song, T.L., Shin, S.J.: Time-optimal impact angle control for vertical plane engagements. IEEE Trans. Aerosp. Electron. Syst. 35(2), 738–742 (1999). https://doi.org/10.1109/7.766954

    Article  Google Scholar 

  3. Tsalik, R., Shima, T.: Optimal guidance around circular trajectories for impact-angle interception. J. Guidance Control Dyn. 39(6), 1278–1291 (2016). https://doi.org/10.2514/1.g001759

    Article  Google Scholar 

  4. Lu, P., Chavez, F.: “Nonlinear Optimal Guidance,” AIAA Guidance, Navigation, and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics (2006). https://doi.org/10.2514/6.2006-6079

  5. Lee, Y.-I., Kim, S.-H., Tahk, M.-J.: Optimality of linear time-varying guidance for impact angle control. IEEE Trans. Aerosp. Electron. Syst. 48(4), 2802–2817 (2012). https://doi.org/10.1109/taes.2012.6324662

    Article  Google Scholar 

  6. Li, H., Wang, J., He, S., Lee, C.-H.: Nonlinear optimal impact-angle-constrained guidance with large initial heading error. J. Guidance Control Dyn. (2021). https://doi.org/10.2514/1.g005868

    Article  Google Scholar 

  7. Gopalan, A., Ratnoo, A., Ghose, D.: Generalized time-optimal impact-angle-constrained interception of moving targets. J. Guidance Control Dyn. 40(8), 2115–2120 (2017). https://doi.org/10.2514/1.g002384

    Article  Google Scholar 

  8. Xiong, S., Wei, M., Zhao, M., Xiong, H., Wang, W., Zhou, B.: Hyperbolic tangent function weighted optimal intercept angle guidance law. Aerosp. Sci. Technol. 78, 604–619 (2018). https://doi.org/10.1016/j.ast.2018.05.018

    Article  Google Scholar 

  9. Kumar, S.R., Maity, A.: Finite–Horizon robust suboptimal control-based impact angle guidance. IEEE Trans. Aerosp. Electron. Syst. 56(3), 1955–1965 (2020). https://doi.org/10.1109/taes.2019.2938126

    Article  Google Scholar 

  10. Xiong, S., Wang, W., Liu, X., Wang, S., Chen, Z.: Guidance law against maneuvering targets with intercept angle constraint. ISA Trans. 53(4), 1332–1342 (2014). https://doi.org/10.1016/j.isatra.2014.03.007

    Article  Google Scholar 

  11. Kumar, S.R., Rao, S., Ghose, D.: Nonsingular terminal sliding mode guidance with impact angle constraints. J. Guidance Control Dyn. 37(4), 1114–1130 (2014). https://doi.org/10.2514/1.62737

    Article  Google Scholar 

  12. Zhao, Y., Sheng, Y., Liu, X.: Sliding mode control based guidance law with impact angle constraint. Chin. J. Aeronaut. 27(1), 145–152 (2014). https://doi.org/10.1016/j.cja.2013.12.011

    Article  Google Scholar 

  13. Erer, K.S., Merttopçuoglu, O.: Indirect impact-angle-control against stationary targets using biased pure proportional navigation. J. Guidance Control Dyn. 35(2), 700–704 (2012). https://doi.org/10.2514/1.52105

    Article  Google Scholar 

  14. Erer, K.S., Ozgoren, M.K.: Control of impact angle using biased proportional navigation. In: AIAA Guidance, Navigation, and Control (GNC) Conference. American Institute of Aeronautics and Astronautics (2013). https://doi.org/10.2514/6.2013-5113

  15. Zhang, Y.-A., Ma, G.-X., Wu, H.-L.: A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 228(10), 1725–1734 (2013). https://doi.org/10.1177/0954410013513754

    Article  Google Scholar 

  16. Jeon, I.-S., Lee, J.-I., Tahk, M.-J.: Impact-time-control guidance law for anti-ship missiles. IEEE Trans. Control Syst. Technol. 14(2), 260–266 (2006). https://doi.org/10.1109/tcst.2005.863655

    Article  Google Scholar 

  17. Tsalik, R., Shima, T.: Circular impact-time guidance. J. Guidance Control Dyn. 42(8), 1836–1847 (2019). https://doi.org/10.2514/1.g004074

    Article  Google Scholar 

  18. Gutman, S.: Impact-time vector guidance. J. Guidance Control Dyn. 40(8), 2110–2114 (2017). https://doi.org/10.2514/1.g002556

    Article  Google Scholar 

  19. Jeon, I.-S., Lee, J.-I., Tahk, M.-J.: Impact-time-control guidance with generalized proportional navigation based on nonlinear formulation. J. Guidance Control Dyn. 39(8), 1885–1890 (2016). https://doi.org/10.2514/1.g001681

    Article  Google Scholar 

  20. Kim, H.-G., Cho, D., Kim, H.J.: Sliding mode guidance law for impact time control without explicit time-to-go estimation. IEEE Trans. Aerosp. Electron. Syst. 55(1), 236–250 (2019). https://doi.org/10.1109/taes.2018.2850208

    Article  Google Scholar 

  21. Hu, Q., Han, T., Xin, M.: Sliding-mode impact time guidance law design for various target motions. J. Guidance Control Dyn. 42(1), 136–148 (2019). https://doi.org/10.2514/1.g003620

    Article  Google Scholar 

  22. Lee, J.-I., Jeon, I.-S., Tahk, M.-J.: Guidance law to control impact time and angle. IEEE Trans. Aerosp. Electron. Syst. 43(1), 301–310 (2007). https://doi.org/10.1109/taes.2007.357135

    Article  Google Scholar 

  23. Kim, T.-H., Lee, C.-H., Jeon, I.-S., Tahk, M.-J.: Augmented polynomial guidance with impact time and angle constraints. IEEE Trans. Aerosp. Electron. Syst. 49(4), 2806–2817 (2013). https://doi.org/10.1109/taes.2013.6621856

    Article  Google Scholar 

  24. Livermore, R., Shima, T.: Deviated pure-pursuit-based optimal guidance law for imposing intercept time and angle. J. Guidance Control Dyn. 41(8), 1807–1814 (2018). https://doi.org/10.2514/1.g003179

    Article  Google Scholar 

  25. Tekin, R., Erer, K.S., Holzapfel, F.: Adaptive impact time control via look-angle shaping under varying velocity. J. Guidance Control Dyn. 40(12), 3247–3255 (2017). https://doi.org/10.2514/1.g002981

    Article  Google Scholar 

  26. Tekin, R., Erer, K.S., Holzapfel, F.: Polynomial shaping of the look angle for impact-time control. J. Guidance Control Dyn. 40(10), 2668–2673 (2017). https://doi.org/10.2514/1.g002751

    Article  Google Scholar 

  27. Kang, S., Tekin, R., Holzapfel, F.: Generalized impact time and angle control via look-angle shaping. J. Guidance Control Dyn. 42(3), 695–702 (2019). https://doi.org/10.2514/1.g003765

    Article  Google Scholar 

  28. Tekin, R., Erer, K.S.: Impact time and angle control against moving targets with look angle shaping. J. Guidance Control Dyn. 43(5), 1020–1025 (2020). https://doi.org/10.2514/1.g004762

    Article  Google Scholar 

  29. Lee, J.-Y., Kim, H.: Impact Time and Angle Control Guidance with Rendezvous Concept. In: AIAA Guidance. Navigation, and Control Conference, American Institute of Aeronautics and Astronautics 2018,(2018). https://doi.org/10.2514/6.2018-1322

  30. Hu, Q., Han, T., Xin, M.: New impact time and angle guidance strategy via virtual target approach. J. Guidance Control Dyn. 41(8), 1755–1765 (2018). https://doi.org/10.2514/1.g003436

    Article  Google Scholar 

  31. Chen, X., Wang, J.: Two-stage guidance law with impact time and angle constraints. Nonlinear Dyn. 95(3), 2575–2590 (2018). https://doi.org/10.1007/s11071-018-4710-3

    Article  MathSciNet  Google Scholar 

  32. Cheng, Z., Wang, B., Liu, L., Wang, Y.: A composite impact-time-control guidance law and simultaneous arrival. Aerosp. Sci. Technol. 80, 403–412 (2018). https://doi.org/10.1016/j.ast.2018.05.009

    Article  Google Scholar 

  33. Kim, H.-G., Kim, H.J.: Backstepping-based impact time control guidance law for missiles with reduced seeker field-of-view. IEEE Trans. Aerosp. Electron. Syst. 55(1), 82–94 (2019). https://doi.org/10.1109/taes.2018.2848319

    Article  Google Scholar 

  34. Yan, X., Zhu, J., Kuang, M., Yuan, X.: A computational-geometry-based 3-dimensional guidance law to control impact time and angle. Aerosp. Sci. Technol. (2020). https://doi.org/10.1016/j.ast.2019.105672

    Article  Google Scholar 

  35. Zhao, Y., Sheng, Y., Liu, X.: Analytical impact time and angle guidance via time-varying sliding mode technique. ISA Trans. 62, 164–176 (2016). https://doi.org/10.1016/j.isatra.2016.02.002

    Article  Google Scholar 

  36. Bryson, A.E., Ho, Y.-C.: Applied Optimal Control. Routledge (2018). https://doi.org/10.1201/9781315137667

  37. Chen, X., Wang, J.: Optimal control based guidance law to control both impact time and impact angle. Aerosp. Sci. Technol. 84, 454–463 (2019). https://doi.org/10.1016/j.ast.2018.10.036

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the Shanghai Aerospace Science and Technology Innovation Fund under the Grant Number SAST2018005, and Aerospace Science and Technology Fund under the Grant Number JZJJX20190017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemao Ma.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Ethics approval

The authors declared that the work submitted to Nonlinear Dynamics is original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Consent for publication

All authors whose names appear on the submission made substantial contributions to the conception or design of the work and approved the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem and Corollary

1.1 Appendix A.1: Proof of Theorem 1

From the triangular geometry in Fig. 2, following equations are derived based on the Law of Cosines.

$$\begin{aligned}&r_v^2(t)=r_t^2(t)+V^2\left( T_{\mathrm{imp}}-t\right) ^2\nonumber \\&\quad -2r_t(t)V\left( T_{\mathrm{imp}}-t\right) \nonumber \\&\quad \cos \left( \lambda _t(t)-\gamma _v\right) \end{aligned}$$
(A.1)
$$\begin{aligned}&r_t^2(t)=r_v^2(t)+V^2\left( T_{\mathrm{imp}}-t\right) ^2-\nonumber \\&\quad 2r_v(t)V\left( T_{\mathrm{imp}}-t\right) \nonumber \\&\quad \cos \left( \pi +\gamma _v-\lambda _{v}(t)\right) \end{aligned}$$
(A.2)

Sufficiency We will proof \(r_v(t)=0,\forall t\in [t^*,T_{\mathrm{imp}}]\) by contradiction, so we firstly assume \(\exists t_1\in [t^*,T_{\mathrm{imp}}]:r_v(t_1)=C\) where \(C\ne 0\) is a positive constant. Considering that the condition \(\exists t^*\le T_{\mathrm{imp}}: \lambda _t(t)=\theta _{\mathrm{imp}}=\gamma _v,\forall t\in \left[ t^*, T_{\mathrm{imp}}\right] \) indicates \({\dot{\lambda }}_t(t)=0,\forall t\in \left[ t^*, T_{\mathrm{imp}}\right] \), it can be obtained from following equation that \(\lambda _t(t)=\gamma (t),\forall t\in \left[ t^*, T_{\mathrm{imp}}\right] \)

$$\begin{aligned} r_t(t){\dot{\lambda }}_t(t)=V\sin \left( \lambda _t(t)-\gamma (t)\right) =0 \end{aligned}$$
(A.3)

Thus \(\gamma _{v}=\gamma (t)\) holds, then substitute it into

$$\begin{aligned} {\dot{r}}_v(t)=V\left( \cos (\lambda _v(t)-\gamma _v)-\cos (\lambda _v(t)-\gamma (t))\right) \end{aligned}$$
(A.4)

we have \({\dot{r}}_v(t)=0\), so \(r_v(t)=C, \forall t\in \left[ t^*, T_{\mathrm{imp}}\right] \) is derived.

Again, since \(\lambda _t(t)=\gamma _v,\forall t\in \left[ t^*, T_{\mathrm{imp}}\right] \), Eq. (A.1) can be rewritten in the form of

$$\begin{aligned} r_v^2(t)=\left( r_t(t)-V\left( T_{\mathrm{imp}}-t\right) \right) ^2 \end{aligned}$$
(A.5)

Take into account the fact that \({r_t}/{V}\le T_{\mathrm{imp}}-t\), it is obtained from (A.5) that

$$\begin{aligned} r_t(t)=V\left( T_{\mathrm{imp}}-t\right) -r_v(t)=V\left( T_{\mathrm{imp}}-t\right) -C \end{aligned}$$
(A.6)

which, however, contradicts to the condition that \( r_t(T_{\mathrm{imp}})=0\), hence the assumption \(\exists t_1\in [t^*,T_{\mathrm{imp}}]:r_v(t_1)=C\ne 0\) does not holds. Now we have completed the proof of \(\exists t^*\le T_{\mathrm{imp}}, r_v(t)=0, \forall t\in [t^*,T_{\mathrm{imp}}]\).

Necessity Considering \(r_v(t)=0,\forall t\in [t^*,T_{\mathrm{imp}}]\), from (A.2) we know that \(r_t(t)=V\left( T_{\mathrm{imp}}-t\right) \) holds for \(\forall t\in [t^*,T_{\mathrm{imp}}]\) then \(r_t(T_{\mathrm{imp}})=0\) is obtained.

Now on the basis of \(r_v(t)=0\) and \(r_t(t)=V\left( T_{\mathrm{imp}}-t\right) , \forall t\in [t^*,T_{\mathrm{imp}}]\), Eq. (A.1) can be rewritten as

$$\begin{aligned} 2r_t^2(t)\left( 1-\cos \left( \lambda _t(t)-\gamma _v\right) \right) =0 \end{aligned}$$
(A.7)

thus \(\lambda _t(t)=\gamma _v=\theta _{\mathrm{imp}},\forall t\in [t^*,T_{\mathrm{imp}}]\) is obtained.

1.2 Appendix A.2: Proof of Corollary 1

Since \(\exists t^*\le T_{\mathrm{imp}}:r_v(t^*)=0\), substituting it into (A.2), we have

$$\begin{aligned} r_t(t^*)=V\left( T_{\mathrm{imp}}-t^*\right) \end{aligned}$$
(A.8)

which indicates that the triangle in Fig. 2 is isosceles and two following base angles at this moment are therefore equal, i.e.,

$$\begin{aligned} \pi +\gamma _v-\lambda _{v}(t^*)=\lambda _v(t^*)-\lambda _t(t^*) \end{aligned}$$
(A.9)

According to Theorem 1, \(r_v(t^*)=0\) implies \(\lambda _t(t^*)=\gamma _v\), then substitute it into (A.9), we have

$$\begin{aligned} \lambda _v(t^*)=\gamma _v+\frac{\pi }{2} \end{aligned}$$
(A.10)

holds. Now rewrite the first time derivative of \(r_v(t)\) as

$$\begin{aligned} \begin{aligned} {\dot{r}}_v(t)&=V\left( \cos (\lambda _v(t)-\gamma _v)-\cos (\lambda _v(t)-\gamma (t))\right) \\&=2V\sin \left( \frac{2\lambda _{v}(t)-\gamma _v-\gamma (t)}{2}\right) \sin \left( \frac{\gamma _v-\gamma (t)}{2}\right) \\ \end{aligned}\nonumber \\ \end{aligned}$$
(A.11)

then substitute (A.10) into (A.11), we have \({\dot{r}}_v(t^*)=V\sin \left( \gamma (t^*)-\gamma _v\right) \). The objective in Problem 2, namely \(r_v(t)=0, \forall t\in [t^*,T_{\mathrm{imp}}]\), indicates that \({\dot{r}}_v(t^*)=0\) holds, hence \(\gamma (t^*)=\gamma _v\) is derived.

Appendix B: Derivation of \({\dot{\lambda }}_v\)

From (1) and (4), we have

$$\begin{aligned} \begin{aligned}&r_t{\dot{\lambda }}_t=V\sin \left( \lambda _t-\gamma \right) \\&r_v{\dot{\lambda }}_v=V\left( \sin (\lambda _v-\gamma )-\sin (\lambda _v-\gamma _v)\right) \end{aligned} \end{aligned}$$
(B.1)

such that

$$\begin{aligned}&{\dot{\lambda }}_v=\frac{r_t{\dot{\lambda }}_t}{r_v\sin (\lambda _t-\gamma )} \left( \sin (\lambda _v-\lambda _t)\cos (\lambda _t-\gamma )\nonumber \right. \\&\quad \left. +\sin (\lambda _t-\gamma )\cos (\lambda _v-\lambda _t)-\sin (\lambda _v-\gamma _v)\right) \end{aligned}$$
(B.2)

Then according to the Rule of Sines and Cosines, the triangle geometry in Fig. 2 give us

$$\begin{aligned}&\sin (\lambda _v-\lambda _t)=\frac{(T_{\mathrm{imp}}-t)V}{r_v}\sin (\lambda _t-\gamma _v) \end{aligned}$$
(B.3)
$$\begin{aligned}&\sin (\lambda _v-\gamma _v)=\frac{r_t}{r_v}\sin (\lambda _t-\gamma _v) \end{aligned}$$
(B.4)
$$\begin{aligned}&\cos (\lambda _v-\lambda _t)=\frac{r_t^2+r_v^2-(T_{\mathrm{imp}}-t)^2V^2}{2r_tr_v} \end{aligned}$$
(B.5)
$$\begin{aligned}&r_t^2-(T_{\mathrm{imp}}-t)^2V^2=r_v^2\nonumber \\&\quad +2(T_{\mathrm{imp}}-t)Vr_v\cos (\lambda _v-\gamma _v) \end{aligned}$$
(B.6)

And we know that

$$\begin{aligned} \cos (\lambda _t-\gamma )=-\frac{{\dot{r}}_t}{V} \end{aligned}$$
(B.7)

from (1). Now substitute (B.3)-(B.7) into (B.2) which becomes

$$\begin{aligned} \begin{aligned} {\dot{\lambda }}_v =&\frac{r_t{\dot{\lambda }}_t}{r_v\sin (\lambda _t-\gamma )}\left( \frac{(T_{\mathrm{imp}}-t)V}{r_v}\sin (\lambda _t-\gamma _v)\right. \\&\left. \left( -\frac{{\dot{r}}_t}{V}\right) -\frac{r_t}{r_v}\sin (\lambda _t-\gamma _v)\right) \\&+\frac{r_t{\dot{\lambda }}_t}{r_v\sin (\lambda _t-\gamma )}\sin (\lambda _t-\gamma )\\&\frac{r_t^2+r_v^2-(T_{\mathrm{imp}}-t)^2V^2}{2r_tr_v}\\ =&-\frac{V{\dot{r}}_t}{r_v^2}\sin (\lambda _t-\gamma _v)\left( T_{\mathrm{imp}}-t -\left( -\frac{r_t}{{\dot{r}}_t}\right) \right) +\frac{{\dot{\lambda }}_t}{2}\\&+\frac{r_t{\dot{\lambda }}_t}{r_v}\left( \frac{r_v^2+2(T_{\mathrm{imp}}-t)Vr_v\cos (\lambda _v-\gamma _v)}{2r_tr_v}\right) \\ =&\left( 1+\frac{(T_{\mathrm{imp}}-t)V\cos (\lambda _v-\gamma _v)}{r_v}\right) {\dot{\lambda }}_t\\&-\frac{V{\dot{r}}_t}{r_v^2}\sin (\lambda _t-\gamma _v)\left( T_{\mathrm{imp}}-t \right. \\&\left. -\left( -\frac{r_t}{{\dot{r}}_t}\right) \right) \\ \end{aligned}\nonumber \\ \end{aligned}$$
(B.8)

then Eq. (37) is derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ma, K., Zhang, G. et al. Virtual target approach-based optimal guidance law with both impact time and terminal angle constraints. Nonlinear Dyn 107, 3521–3541 (2022). https://doi.org/10.1007/s11071-021-07142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07142-3

Keywords

Navigation