Skip to main content
Log in

Time-delayed reservoir computing based on an optically pumped spin VCSEL for high-speed processing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We report on the first numerical implementation of photonic reservoir computing (RC) based on an optically pumped spin vertical-cavity surface-emitting laser (spin VCSEL) with optical feedback and injection. The proposed RC aims at both fast, single task processing and parallel tasks processing, benefiting from feasible tunability and multiplexing of the left and right circularly polarized modes. We evaluate its prediction and classification abilities through two benchmarks, i.e., a Santa Fe time series prediction task and a waveform recognition task. In particular, both the influence of external and internal parameters on the prediction and classification performance is systematically analyzed. The numerical results show that the proposed RC based on a spin VCSEL has remarkable prediction and classification abilities over wider parameter ranges due to the feasible adjustment of the pump intensity and polarization as compared to conventional VCSELs. Most importantly, because of its intrinsic fast response, the spin VCSEL-based RC system is capable of enhancing the information processing rate by significantly reducing the allowable feedback delay time and virtual node interval, reaching 20 Gbps for single task processing and 10 Gbps for parallel tasks processing, respectively. Such a spin VCSEL-based RC system has a potential to achieve high-speed information processing and lower power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Caulfield, H., Dolev, S.: Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010)

    Article  Google Scholar 

  2. Woods, D., Naughton, T.: Photonic neural networks. Nat. Phys. 8, 257–259 (2012)

    Article  Google Scholar 

  3. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  4. Steil, J.J.: Backpropagation-decorrelation: Online recurrent learning with O(N) complexity. 2004 IEEE international joint conference on neural networks 2, pp 843–848 (2004)

  5. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)

    Article  MATH  Google Scholar 

  6. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  7. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  8. Verstraeten, D., Schrauwen, B., Stroobandt, D., Van Campenhout, J.: Isolated word recognition with the liquid state machine: a case study. Inf. Process. Lett. 95(6), 521–528 (2005)

    Article  MATH  Google Scholar 

  9. Verstraeten, D., Schrauwen, B., Stroobandt, D.: Reservoir-based techniques for speech recognition. The 2006 IEEE international joint conference on neural networks. 1050–1053 (2006)

  10. Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. Künstl. Intell. 26, 365–371 (2012)

    Article  Google Scholar 

  11. Tanaka, G., Yamane, T., Héroux, J., Nakane, R., Kanazawa, N., Takeda, S., Numata, H., Nakano, D., Hirose, A.: Recent advances in physical reservoir computing: a review. Neural Networks 115, 100–123 (2019)

    Article  Google Scholar 

  12. Appeltant, L., Soriano, M., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

    Article  Google Scholar 

  13. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013)

    Article  Google Scholar 

  14. Nakayama, J., Kanno, K., Uchida, A.: Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. Opt. Express 24(8), 8679–8692 (2016)

    Article  Google Scholar 

  15. Kuriki, Y., Nakayama, J., Takano, K., Uchida, A.: Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers. Opt. Express 26(5), 5777–5788 (2018)

    Article  Google Scholar 

  16. Nguimdo, R.M., Erneux, T.: Enhanced performances of a photonic reservoir computer based on a single delayed quantum cascade laser. Opt. Lett. 44(1), 49–52 (2019)

    Article  Google Scholar 

  17. Hou, Y., Xia, G., Yang, W., Wang, D., Jayaprasath, E., Jiang, Z., Hu, C., Wu, Z.: Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Opt. Express 26(8), 10211–10219 (2018)

    Article  Google Scholar 

  18. Guo, X., Xiang, S., Zhang, Y., Lin, L., Wen, A., Hao, Y.: High-speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation. IEEE J. Sel. Topics Quantum Electron. 26(5), 1–7 (2020)

    Article  Google Scholar 

  19. Nguimdo, R.M., Verschaffelt, G., Danckaert, J., Van der Sande, G.: Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Trans. Neural Networks Learn. Syst. 26(12), 3301–3307 (2015)

    Article  MathSciNet  Google Scholar 

  20. Nguimdo, R.M., Verschaffelt, G., Danckaert, J., Van der Sande, G.: Reducing the phase sensitivity of laser-based optical reservoir computing systems. Opt. Express 24(2), 1238–1252 (2016)

    Article  Google Scholar 

  21. Vatin, J., Rontani, D., Sciamanna, M.: Enhanced performance of a reservoir computer using polarization dynamics in VCSELs. Opt. Lett. 43(18), 4497–4500 (2018)

    Article  Google Scholar 

  22. Vatin, J., Rontani, D., Sciamanna, M.: Experimental reservoir computing using VCSEL polarization dynamics. Opt. Express 27(13), 18579–18584 (2019)

    Article  Google Scholar 

  23. Guo, X., Xiang, S., Zhang, Y., Lin, L., Wen, A., Hao, Y.: Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system. Opt. Express 27(16), 23293–23306 (2019)

    Article  Google Scholar 

  24. Guo, X., Xiang, S., Zhang, Y., Lin, L., Wen, A., Hao, Y.: Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback. IEEE J. Sel. Top. Quantum Electron. 26(1), 1–9 (2020)

    Article  Google Scholar 

  25. Vatin, J., Rontani, D., Sciamanna, M.: Experimental realization of dual task processing with a photonic reservoir computer. APL Photon. 5(8), 086105 (2020)

    Article  Google Scholar 

  26. Nguimdo, R.M., Lacot, E., Jacquin, O., Hugon, O., Van der Sande, G., Guillet de Chatellus, H.: Prediction performance of reservoir computing systems based on a diode-pumped erbium-doped microchip laser subject to optical feedback. Opt. Lett. 42(3), 375–378 (2017)

    Article  Google Scholar 

  27. Takano, K., Sugano, C., Inubushi, M., Yoshimura, K., Sunada, S., Kanno, K., Uchida, A.: Compact reservoir computing with a photonic integrated circuit. Opt. Express 26(22), 29424–29439 (2018)

    Article  Google Scholar 

  28. Sugano, C., Kanno, K., Uchida, A.: Reservoir computing using multiple lasers with feedback on a photonic integrated circuit. IEEE J. Sel. Top. Quantum Electron. 26(1), 1–9 (2020)

    Article  Google Scholar 

  29. Nguimdo, R.M., Verschaffelt, G., Danckaert, J., Van der Sande, G.: Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics. Opt. Express 22(7), 8672–8686 (2014)

    Article  Google Scholar 

  30. Hovel, S., Gerhardt, N., Hofmann, M., Yang, J., Reuter, D., Wieck, A.: Spin controlled optically pumped vertical cavity surface emitting laser. Electron. Lett. 41(5), 251–253 (2005)

    Article  Google Scholar 

  31. Hövel, S., Bischoff, A., Gerhardt, N.C., Hofmann, M.R.: Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 92(4), 041118 (2008)

    Article  Google Scholar 

  32. Saha, D., Basu, D., Bhattacharya, P.: High-frequency dynamics of spin-polarized carriers and photons in a laser. Phys. Rev. B 82(20), 205309 (2010)

    Article  Google Scholar 

  33. Holub, M., Shin, J., Saha, D.: Electrical spin injection and threshold reduction in a semiconductor laser. Phys. Rev. Lett. 98(14), 146603 (2007)

    Article  Google Scholar 

  34. Lindemann, M., Xu, G., Pusch, T., Michalzik, R., Hofmann, M.R., Zutic, I., Gerhardt, N.C.: Ultrafast spin-lasers. Nature 568, 212–215 (2019)

    Article  Google Scholar 

  35. Li, N., Alexandropoulos, D., Susanto, H., Henning, I., Adams, M.: Stability analysis of quantum-dot spin-VCSELs. Electronics 5(4), 83 (2016)

    Article  Google Scholar 

  36. Torre, M., Susanto, H., Li, N., Schires, K., Salvide, M.F., Henning, I.D., Adams, M.J., Hurtado, A.: High frequency continuous birefringence oscillations in spin-polarized vertical-cavity surface-emitting lasers. Opt. Lett. 42(8), 1628–1631 (2017)

    Article  Google Scholar 

  37. Li, N., Susanto, H., Cemlyn, B., Henning, I., Adams, M.: Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers. Phys. Rev. A 96(1), 013840 (2017)

    Article  Google Scholar 

  38. Li, N., Susanto, H., Cemlyn, B., Henning, I., Adams, M.: Secure communication systems based on chaos in optically-pumped spin-VCSELs. Opt. Lett. 42(17), 3494–3497 (2017)

    Article  Google Scholar 

  39. Li, N., Susanto, H., Cemlyn, B., Henning, I., Adams, M.: Mapping bifurcation structure and parameter dependence in quantum dot spin-VCSELs. Opt. Express 26(11), 14636–14649 (2018)

    Article  Google Scholar 

  40. Adams, M., Li, N., Cemlyn, B., Susanto, H., Henning, I.: Algebraic expressions for the polarisation response of spin-VCSELs. Semicond. Sci. Technol. 33(6), 064002 (2018)

    Article  Google Scholar 

  41. Huang, Y., Zhou, P., Li, N.: High-speed secure key distribution based on chaos synchronization in optically pumped QD spin-polarized VCSELs. Opt. Express 29(13), 19675–19689 (2021)

    Article  Google Scholar 

  42. Huang, Y., Zhou, P., Li, N.: Broad tunable photonic microwave generation in an optically pumped spin-VCSEL with optical feedback stabilization. Opt. Lett. 46(13), 3147–3150 (2021)

    Article  Google Scholar 

  43. Schires, K., Seyab, R.A., Hurtado, A., Korpijarvi, V., Guina, M., Henning, I.D., Adams, M.J.: Optically-pumped dilute nitride spin-VCSEL. Opt. Express 20(4), 3550–3555 (2012)

    Article  Google Scholar 

  44. Susanto, H., Schires, K., Adams, M.J., Henning, I.D.: Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: asymptotic analysis, numerics, and experiments. Phys. Rev. A 92(6), 063838 (2015)

    Article  Google Scholar 

  45. Gahl, A., Balle, S., San Miguel, M.: Polarization dynamics of optically pumped VCSELs. IEEE J. Quantum Electron. 35(3), 342–351 (1999)

    Article  Google Scholar 

  46. Weigend, A.S., Gershenfeld, N.A.: Time series prediction: forecasting the future and understanding the past. 1993. http://www-psych.stanford.edu/andreas/Time-Series/SantaFe.html

  47. Lindemann, M., Pusch, T., Michalzik, R., Gerhardt, N.C., Hofmann, M.R.: Frequency tuning of polarization oscillations: toward high-speed spin-lasers. Appl. Phys. Lett. 108(4), 042404 (2016)

    Article  Google Scholar 

  48. Zhang, L., Ji, J.C.: One-to-three resonant Hopf bifurcations of a maglev system. Nonlinear Dyn. 93, 1277–1286 (2018)

    Article  Google Scholar 

  49. Argyris, A., Bueno, J., Fischer, I.: Photonic machine learning implementation for signal recovery in optical communications. Sci. Rep. 8(1), 8487 (2018)

    Article  Google Scholar 

  50. Argyris, A., Bueno, J., Fischer, I.: PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing. IEEE Access 7, 37017–37025 (2019)

    Article  Google Scholar 

  51. Cai, Q., Guo, Y., Li, P., Bogris, A., Alan Shore, K., Zhang, Y., Wang, Y.: Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing. Photon. Res. 9, B1–B8 (2021)

    Article  Google Scholar 

  52. Antonik, P., Marsal, N., Rontani, D.: Large-scale spatiotemporal photonic reservoir computer for image classification. IEEE J. Sel. Topics Quantum Electron. 26(1), 1–12 (2020)

    Article  Google Scholar 

  53. Larger, L., Baylón-Fuentes, A., Martinenghi, R., Udaltsov, V.S., Chembo, Y.K., Jacquot, M.: High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017)

    Google Scholar 

  54. Pathak, J., Lu, Z., Hunt, B., Girvan, M., Ott, E.: Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27, 121102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Yigong Yang and Pei Zhou are co-first authors.This work is supported in part by the National Natural Science Foundation of China under Grants 62004135, and 62001317, in part by the Natural Science Research Project of Jiangsu Higher Education Institutions under Grant 20KJA416001, and 20KJB510011, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200855, in part by Open Fund of IPOC (BUPT) under Grant IPOC2020-A012, in part by State Key Laboratory of Advanced Optical Communication Systems Networks, China under Grant 2021GZKF003, in part by the Startup Funding of Soochow University under Grant Q415900119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianqiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhou, P., Mu, P. et al. Time-delayed reservoir computing based on an optically pumped spin VCSEL for high-speed processing. Nonlinear Dyn 107, 2619–2632 (2022). https://doi.org/10.1007/s11071-021-07140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07140-5

Keywords

Navigation