Skip to main content
Log in

Dynamic analysis and experiment of Quasi-zero-stiffness system with nonlinear hysteretic damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear Quasi-zero-stiffness (QZS) vibration isolation systems with linear damping cannot lead to displacement isolation with different excitation levels. In this study, a QZS system with nonlinear hysteretic damping is investigated. The Duffing-Ueda equation with a coupling nonlinear parameter \(\eta\) is proposed to describe the dynamic motion of the QZS system. By using the harmonic balance method (HBM), the primary and secondary harmonic responses are obtained and verified by numerical simulations. The results indicate that nonlinear damping can guarantee a bounded response for different excitation levels. The one-third subharmonic response is found to affect the isolation frequency range even when the primary response is stable. To evaluate the performance of the QZS system, the effective isolation frequency \({\Omega }_{e}\) and maximum transmissibility \(T_{p}\) are proposed to represent the vibration isolation range and isolation effect, respectively. By discussing the effect of \(\eta\) on \({\Omega }_{e}\) and \(T_{p}\), the conditions to avoid nonlinear phenomena and improve the isolation performance are provided. A prototype of the QZS system is then constructed for vibration tests, which verified the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Alabuzhev, P.M., Rivin, E.I.: Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness. Taylor, NewYork (1989)

    Google Scholar 

  2. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound. Vib. 314(3), 371–452 (2008)

    Article  MathSciNet  Google Scholar 

  3. Mizuno, T.: Vibration isolation system using negative stiffness. Int. J. Japan Soc. Prec. Eng. 73(4), 418–421 (2004)

    Article  MathSciNet  Google Scholar 

  4. Li, H., Li, Y.C., Li, J.C.: Negative stiffness devices for vibration isolation applications: a review. Adv. Struct. Eng. 23(8), 1739–1755 (2019)

    Article  Google Scholar 

  5. Woodard, S.E., Housner, J.M.: Nonlinear behavior of a passive zero-spring-rate suspension system. J. Guid. Control. Dynam. 14(1), 84–89 (1991)

    Article  Google Scholar 

  6. Naeeni, I.P., Ghayour, M., Keshavarzi, A., Moslemi, A.: Theoretical analysis of vibration pickups with quasi-zero-stiffness characteristic. Acta. Mech. 230(12), 3205–3220 (2019)

    Article  Google Scholar 

  7. Winterwood, J.: High Performance Vibration Isolation for Gravitational Wave Detection, PhD Thesis, University of Western Australia, 2001

  8. Harris, C.M., Piersol, A.G.: Shock and Vibration Hand-Book. McGraw-Hill, New York (2002)

    Google Scholar 

  9. Molyneux, W.G.: The support of an aircraft for ground resonance tests: a survey of available methods. Aircr. Eng. Aerosp. 30, 160–166 (1958)

    Article  Google Scholar 

  10. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound. Vib. 301(3), 678–689 (2007)

    Article  Google Scholar 

  11. Carrella, A., Brennan, M., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero stiffness. J. Sound. Vib. 322(4), 707–717 (2009)

    Article  Google Scholar 

  12. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Article  Google Scholar 

  13. Carrella, A., Brennan, M.J., Waters, T.P.: Optimization of a quasi-zero-stiffness isolator. J. Mech. Sci. Technol. 21(6), 946–949 (2007)

    Article  Google Scholar 

  14. Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound. Vib. 315, 712–720 (2008)

    Article  Google Scholar 

  15. Kovacic, I., Brennan, M.J., Waters, T.P., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound. Vib. 315(3), 700–711 (2008)

    Article  Google Scholar 

  16. Hao, Z.F., Cao, Q.J.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound. Vib. 340, 61–79 (2015)

    Article  Google Scholar 

  17. Lan, C.C., Yang, S.A., Wu, Y.S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound. Vib. 333(20), 4843–4858 (2014)

    Article  Google Scholar 

  18. Zhao, J., Sun, Y., Li, J., Xie, S.: A novel electromagnet-based absolute displacement sensor with approximately linear quasi-zero-stiffness. Int. J. Mech. Sci. 181, 105695 (2020)

    Article  Google Scholar 

  19. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound. Vib. 326, 88–103 (2009)

    Article  Google Scholar 

  20. Zhou, N., Liu, K.: A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound. Vib. 329, 1254–1273 (2010)

    Article  Google Scholar 

  21. Zheng, Y., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Pr. 100, 135–151 (2018)

    Article  Google Scholar 

  22. Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero- stiffness characteristic. J. Sound. Vib. 332(14), 3377–3389 (2013)

    Article  Google Scholar 

  23. Liu, J., Ju, L., Blair, D.G.: Vibration isolation performance of an ultra-low frequency folded pendulum resonator. Phys. Lett. A. 228, 243–249 (1997)

    Article  Google Scholar 

  24. Blair, D.G., Winterflood, J., Slagmolen, B.: High performance vibration isolation using springs in Euler column buckling mode. Phys. Lett. A. 300, 122–130 (2002)

    Article  Google Scholar 

  25. Plaut, R.H., Sidbury, J.E., Virgin, L.N.: Analysis of buckled and pre-bent fixed-end columns used as vibration isolators. J. Sound. Vib. 283, 1216–1228 (2005)

    Article  Google Scholar 

  26. Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound. Vib. 332, 3359–3376 (2013)

    Article  Google Scholar 

  27. Zhou, J.X., Wang, X.L., Xu, D.L., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound. Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  28. Zhang, Q.L., Xia, S.Y., Xu, D.L., Peng, Z.K.: A torsion–translational vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 99(2), 1467–1488 (2020)

    Article  Google Scholar 

  29. Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound. Vib. 332(1), 167–183 (2013)

    Article  Google Scholar 

  30. Liu, C.R., Yu, K.P.: Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 100, 2141–2165 (2020)

    Article  Google Scholar 

  31. Ueda, Y.: Steady motions exhibited by Duffing’s equation. Res. Rep. 434, 1–12 (1980)

    Google Scholar 

  32. Hassan, A.: On the third superharmonic resonance in the duffing oscillator. J. Sound. Vib. 172(4), 513–526 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nayfeh, A.H., Mook, A.D.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  34. Stoker, J.J.: Nonlinear vibrations in mechanical and electrical systems. Institute for Mathematics and Mechanics New York University, New York (1950)

    MATH  Google Scholar 

  35. Mickens, R.E.: A generalization of the method of harmonic balance. J. Sound. Vib. 111(3), 591–595 (1987)

    MathSciNet  Google Scholar 

  36. Mickens, R.E.: Comments on the method of harmonic balance. J. Sound. Vib. 94(3), 456–460 (1984)

    Article  Google Scholar 

  37. Szemplinska-Stupnicka, W., Bajkowski, J.: The 1/2 subharmonic resonance and its transition to chaotic motion in a nonlinear oscillator. Int. J. Nonlinear Mech. 21(5), 401–419 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jordan, D.W., Smith, P.: Non-Linear Differential Equations. McGraw-Hill, New York (1977)

    Google Scholar 

  39. Hayashi, C.H.: Nonlinear Oscillations in Physical Systems. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  40. Al-Qaisia, A.A., Hamdan, M.N.: Subharmonic resonance and transition to chaos of nonlinear oscillators with a combined softening and hardening nonlinearities. J. Sound. Vib. 305, 772–782 (2007)

    Article  Google Scholar 

  41. Chen, L.Q., Yang, X.D.: Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models. Int. J. Solids Struct. 42(1), 37–50 (2005)

    Article  MATH  Google Scholar 

  42. Parks, P.C.: A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov. Math Proc. Cambridge. 58(4), 694–702 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pandit, S.G., Deo, S.G.: Lyapunov’s second method. Lect. Notes Math. 954, 78–97 (1982)

    Article  Google Scholar 

  44. Szemplińska-Stupnicka, W.: Higher harmonic oscillations in heteronomous non-linear systems with one degree of freedom. Int. J. Nonlin. Mech. 3(1), 17–30 (1968)

    Article  MATH  Google Scholar 

  45. Burton, T.D., Rahman, Z.: On the multi-scale analysis of strongly non-linear forced oscillators. Int. J. Nonlin. Mech. 21(2), 135–146 (1986)

    Article  MATH  Google Scholar 

  46. Dietl, P., Wensing, J., Nijen, G.C.: Rolling bearing damping for dynamic analysis of multi-body systems-experimental and theoretical results. P. I. Mech. Eng. K-J MUL. 214(1), 33–43 (2000)

    Google Scholar 

  47. Lambert, R. J., Pollard, A., Stone, B. J.: Some characteristics of rolling-element bearings under oscillating conditions. Part 1: Theory and Rig Design. P. I. Mech. Eng. K-J MUL.220(3), 157–170(2006).

  48. Lambert, R. J., Pollard, A., Stone, B. J.: Some characteristics of rolling element bearings under oscillating conditions. Part 2: experimental results for interference fitted taper-roller bearings. P. I. Mech. Eng. K-J MUL. 220(3), 171–179(2006)

  49. Lambert, R. J., Pollard, A., Stone, B. J.: Some characteristics of rolling-element bearings under oscillating conditions. Part 3: experimental results for clearance-fitted taper-roller bearings and their relevance to the design of spindles with high dynamic stiffness. Proc. P. I. Mech. Eng. K-J MUL.220(3), 181–190(2006)

  50. Ali, N. J., Garcıa, J. M.: Experimental studies on the dynamic characteristics of rolling element bearings. Proc. P. I. Mech. Eng. K-J MUL. 224(7), 659–666(2010)

Download references

Funding

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhou, C. Dynamic analysis and experiment of Quasi-zero-stiffness system with nonlinear hysteretic damping. Nonlinear Dyn 107, 2153–2175 (2022). https://doi.org/10.1007/s11071-021-07136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07136-1

Keywords

Navigation