Skip to main content
Log in

Cross-section deformation, geometric stiffening, and locking in the nonlinear vibration analysis of beams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stiff behavior of more general finite element (FE) beam formulations in some problems can be misinterpreted as locking based on comparison with simplified analytical and/or less general FE beam formulations. This paper demonstrates that, in more general beam formulations, higher stiffness can be attributed to geometric nonlinearities as result of cross-section deformations, not properly captured by analytical or less general FE beam formulations. Limitations of the ad hoc approaches used in conventional FE beam formulations to account for beam cross-section deformations are identified, their inconsistency with theory of continuum mechanics is explained, and their appropriateness is evaluated in view of a more general approach. Effect of using different constitutive models on the stiff behavior of beams is investigated, and it is demonstrated that the stiff behavior resulting from the geometric stiffening due to the coupling between the cross-section deformations and beam vibrations in more general beam formulations cannot always be interpreted as locking. Relationship between geometric stiffening, cross-section deformation, locking, and constitutive model in more general FE beam formulation is explained. Several numerical examples are used to perform static, dynamic, and thermal analyses; and the results obtained are compared with FE commercial software. These results demonstrate limitations of beam formulations used in commercial FE software, shed light on problems of using simplified analytical solutions for verification, highlight concerns of using conventional FE approaches for soft robots and materials, and caution against misinterpretation of the stiff behavior as locking when using more general beam formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data Availability Statement

The data of the models developed in the paper are presented in the numerical example section.

References

  1. Hartog, D.: Mechanical Vibration. McGraw-Hill, New York (1968)

    Google Scholar 

  2. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill Book Co., Inc., New York (1970)

    MATH  Google Scholar 

  3. Dym, C.L., Shames, I.H.: Solid Mechanics: A Variational Approach. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  4. Timoshenko, S., Young, D.H., Weaver, W.: Vibration Problems in Engineering. Wiley, New York (1974)

    Google Scholar 

  5. Cook, R.D.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1981)

    MATH  Google Scholar 

  6. Logan, D.L.: A First Course in the Finite Element Method, Chapter 15, 6th edn. Cengage Learning, Boston (2017)

    Google Scholar 

  7. Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill Company, London (1977)

    MATH  Google Scholar 

  8. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, Vol. 2: Solid Mechanics, vol.5., Butterworth-Heinemann, Oxford (2000).

  9. Hallquist, J.O.: LS-DYNA Theory Manual. Livemore Software Technology Corporation, Livermore (2006)

    Google Scholar 

  10. Belytschko, T., Bindeman, L.P.: Assumed strain stabilization of the eight node hexahedral element. Comput. Methods Appl. Mech. Eng. 105, 225–260 (1993)

    Article  MATH  Google Scholar 

  11. Hussein, B.A., Sugiyama, H., Shabana, A.A.: Coupled deformation modes in the large deformation finite-element analysis: problem definition. ASME J. Comput. Nonlinear Dyn. 2(2), 146–154 (2006)

    Article  Google Scholar 

  12. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229(7), 2923–2946 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sopanen, J.T., Mikkola, A.M.: description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1–2), 53–74 (2003)

    Article  MATH  Google Scholar 

  14. Johnson, W.: Helicopter Theory. Princeton University Press, New Jersey (1980)

    Google Scholar 

  15. Schilhans, M.J.: Bending frequency of a rotating cantilever beam. ASME, J. Appl. Mech. 25, 28–30 (1958)

    Article  Google Scholar 

  16. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. AIAA J. Guid. Control Dyn. 10(2), 139–151 (1987)

    Article  Google Scholar 

  17. Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991)

    Article  MATH  Google Scholar 

  18. Mayo, J., Dominguez, J.: Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: geometric stiffness. Comput. Struct. 59, 1039–1050 (1996)

    Article  MATH  Google Scholar 

  19. Bakr, E.M., Shabana, A.A.: Geometrically nonlinear analysis of multibody systems. Comput. Struct. 23, 739–751 (1986)

    Article  MATH  Google Scholar 

  20. Garcia-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect. parts 1 & 2. IMechE J. Multi-body Dyn. 219, 187–211 (2005)

    Google Scholar 

  21. Sugawara, Y, Shinohara, K, Takagi, Y, Kobayas, N.: Experimental validation of numerical analysis on ANCF about dynamic stiffening effect of a two-dimensional beam. In: 5th Asian Conference on Multibody Dynamics 2010, Kyoto, Japan (2010)

  22. Lugrís, U., Naya, M.A., Pérez, J.A., Cuadrado, J.: Implementation and efficiency of two geometric stiffening approaches. Multibody Syst. Dyn. 20, 147–161 (2008). https://doi.org/10.1007/s11044-008-9114-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Mayo, J.M., García-Vallejo, D., Domínguez, J.: Study of the geometric stiffening effect: comparison of different formulations. Multibody Syst. Dyn. 11, 321–341 (2004). https://doi.org/10.1023/B:MUBO.0000040799.63053.d9

    Article  MATH  Google Scholar 

  24. Cuadrado, J., Lugrís, U.: Implementation and efficiency of several geometric stiffening approaches. In: 12th IFToMM World Congress, Besançon (France), June 18–21, (2007)

  25. Obrezkov, L.P., Matikainen, M.K., Harish, A.B.: A finite element for soft tissue deformation based on the absolute nodal coordinate formulation. Acta Mech. 231, 1519–1538 (2020). https://doi.org/10.1007/s00707-019-02607-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, L., Wei, C., Zhao, Y.: Modeling and verification of a RANCF fluid element based on cubic rational bezier volume. ASME J. Comput. Nonlinear Dyn. 15(4), 041005 (2020)

    Article  Google Scholar 

  27. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  28. ANSYS, 2015, Ansys Mechanical APDL Element Reference, Canonsburg, PA.

  29. Kohnke, P.: Theory Reference for the Mechanical APDL and Mechanical Applications. PA, USA, ANSYS Inc, Canonsburg (2009)

    Google Scholar 

  30. Belytschko, T., Schwer, L., Klein, M.J.: Large displacement, transient analysis of space frames. Int. J. Numer. Methods Eng. 11, 65–84 (1977)

    Article  MATH  Google Scholar 

  31. Tian, Q., Zhang, Y.Q., Chen, L.P., Qin, G.: Advances in the absolute nodal coordinate method for the flexible multibody dynamics. Adv. Mech. 40(2), 189–193 (2010)

    Google Scholar 

  32. Chen, Y., Zhang, D.G., Li, L.: Dynamic analysis of rotating curved beams by using absolute nodal coordinate formulation based on radial point interpolation method. J. Sound Vib. 441, 63–83 (2019)

    Article  Google Scholar 

  33. Nachbagauer, K.: State of the Art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerospace Sci. Technol. 29(1), 386–393 (2013)

    Article  Google Scholar 

  35. Yu, L., Zhao, Z., Tang, J., Ren, G.: Integration of absolute nodal elements into multibody system. Nonlinear Dyn. 62, 931–943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu, H.D., Zhao, C.Z., Zheng, B., Wang, H.: A new higher-order locking-free beam element based on the absolute nodal coordinate formulation. J. Mech. Eng. Sci. 232(9), 3410–3423 (2017)

    Google Scholar 

  37. Laflin, J.J., Anderson, K.S., Khan, I.M., Poursina, M.: New and extended applications of the divide-and-conquer algorithm for multibody dynamics. ASME J. Comput. Nonlinear Dyn. 9(4), 1–8 (2014)

    Google Scholar 

  38. Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.Z.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. ASME J. Comput. Nonlinear Dyn. 4(2), 021009-1-021009–14 (2009)

    Google Scholar 

  39. Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Pogolev, D., Dmitrochenko, O.: Large deflection analysis of a thin plate: computer simulation and experiment. Multibody Syst. Dyn. 11, 185–208 (2004)

    Article  MATH  Google Scholar 

  40. Takahashi, Y., Shimizu, N., Suzuki, K.: Study on the frame structure modeling of the beam element formulated by absolute coordinate approach. J. Mech. Sci. Technol. 19, 283–291 (2005)

    Article  Google Scholar 

  41. Skrinjar, L., Slavic, J., Boltežar, M.: Absolute nodal coordinate formulation in a pre-stressed large-displacements dynamical system. J. Mech. Eng. 63, 417–425 (2017). https://doi.org/10.5545/sv-jme.2017.4561

    Article  Google Scholar 

  42. Ma, C., Wei, C., Sun, J., Liu, B.: Modeling method and application of rational finite element based on absolute nodal coordinate formulation. Acta Mech. Solida Sinica (2018). https://doi.org/10.1007/s10338-018-0020-z

    Article  Google Scholar 

  43. Fotland, G., Haskins, C., Rølvåg, T.: Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels. Syst. Eng. 23, 177–188 (2019). https://doi.org/10.1002/sys.21503

    Article  Google Scholar 

  44. Li, S., Wang, Y., Ma, X., and Wang, S.: Modeling and simulation of a moving yarn segment: based on the absolute nodal coordinate formulation. Mathematical Problems in Engineering, Vol. 2019, Article ID 6567802 (2019). https://doi.org/10.1155/2019/6567802.

  45. Pan, K., Cao, D.: Absolute nodal coordinate finite element approach to the two-dimensional liquid sloshing problems. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 234(2), 1–25 (2020). https://doi.org/10.1177/1464419320907785

    Article  Google Scholar 

  46. Yamano, A.A., Shintani, A., Ito, T., Nakagawa, C., Ijima, H.: Influence of boundary conditions on a flutter-mill. J. Sound Vib. 478, 115359 (2020)

    Article  Google Scholar 

  47. Hewlett, J.: Methods for real-time simulation of systems of rigid and flexible bodies with unilateral contact and friction”, Ph.D. Thesis, Department of Mechanical Engineering, McGill University (2019).

  48. Hewlett, J., Arbatani, S., Kovecses, J.: A fast and stable first-order method for simulation of flexible beams and cables. Nonlinear Dyn. 99, 1211–1226 (2020)

    Article  Google Scholar 

  49. Shen, Z.X., Li, P., Liu, C., Hu, G.K.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)

    Article  Google Scholar 

  50. Shen, Z., Liu, C., Li, H.: Viscoelastic analysis of bistable composite shells via absolute nodal coordinate formulation. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.112537

    Article  Google Scholar 

  51. Htun, T.Z., Suzuki, H., Garcia-Vallejo, D.: Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF). Mech. Mach. Theory 153, 103961 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103961

    Article  Google Scholar 

  52. Zhang, W., Zhu, W., Zhang, S.: Deployment dynamics for a flexible solar array composed of composite-laminated plates. ASCE J. Aerosp. Eng. 33, 1–21 (2020)

    Article  Google Scholar 

  53. Sheng, F., Zhong, Z., Wang, K.: Theory and model implementation for analyzing line structures subject to dynamic motions of large deformation and elongation using the absolute nodal coordinate formulation (ANCF) approach. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05783-4

    Article  Google Scholar 

  54. Wang, J., Wang, T.: Buckling analysis of beam structure with absolute nodal coordinate formulation. IMechE J. Mech. Eng. Sci. (2020). https://doi.org/10.1177/0954406220947117

    Article  Google Scholar 

  55. Yuan, T., Liu, Z., Zhou, Y., Liu, J.: Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment. Multibody Syst. Dyn. 50, 1–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhao, C.H., Bao, K.W., Tao, Y.L.: Transversally higher-order interpolating polynomials for the two-dimensional shear deformable ANCF beam elements based on common coefficients. Multibody Syst. Dyn. (2020). https://doi.org/10.1007/s11044-020-09768-4

    Article  MATH  Google Scholar 

  57. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  58. Shabana, A.A.: Computational Continuum Mechanics, 3rd edn. Wiley, Chichester, UK (2018)

    Book  MATH  Google Scholar 

  59. Shabana, A.A., Eldeeb, A.E.: Motion and shape control of soft robots and materials. Nonlinear Dyn (2021). https://doi.org/10.1007/s11071-021-06272-y

    Article  Google Scholar 

  60. Babuska, I., Suri, M.: On locking and robustness in the finite element method. SIAM J Numer Anal 29(5), 1261–1293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  61. Carpenter, N., Belytschko, T., Stolarski, H.: Locking and shear scaling factors in bending elements. Comput Struct 22(1), 39–52 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rakowski, J.: The interpretation of the shear locking in beam elements. Comput Struct 37(5), 769–776 (1990)

    Article  Google Scholar 

  63. Raveendranath, P., Singh, G., Pradhan, B.: A two-noded locking-free shear flexible curved beam element. Int J Numer Methods Eng 44(2), 265–280 (1999)

    Article  MATH  Google Scholar 

  64. Stolarski, H., Belytschko, T.: Shear and membrane locking in curved elements. Comput Methods Appl Mech Eng 41(3), 279–296 (1983)

    Article  MATH  Google Scholar 

  65. Shabana, A.A., Desai, C.J., Grossi, E., Patel, M.: Generalization of the strain-split method and evaluation of the nonlinear ancf finite elements. Acta Mech 231, 1365–1376 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  66. Trivedi, D., Dienno, D., Rahn, C.D.: Optimal, model-based design of soft robotic manipulators. ASME J. Mech. Des. 130, 091402-1-091402–9 (2008)

    Article  Google Scholar 

  67. Shabana, A.A., Zhang, D.: ANCF multiplicative-decomposition thermoelastic approach for arbitrary geometry. ASCE J. Struct. Eng. (2021)

  68. Maqueda, L.G., Shabana, A.A.: Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. J. Multibody Syst. Dyn. 18(3), 375–396 (2007)

    Article  MATH  Google Scholar 

  69. Petrolo, A.S., Casciaro, R.: 3D beam element based on saint Venànt’s Rod theory. Comput. Struct. 82, 2471–2481 (2004). https://doi.org/10.1016/j.compstruc.2004.07.004

    Article  Google Scholar 

  70. Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  71. Shabana, A.A.: Vibration of Discrete and Continuous Systems, 3rd edn. Springer, New York (2019)

    Book  MATH  Google Scholar 

  72. Thomson, W.T.: Theory of Vibration with Applications. Prentice Hall, Englewood Cliffs, NJ (1988)

    Google Scholar 

  73. Khulief, Y.A., Shabana, A.A.: Impact responses of multi-body systems with consistent and lumped masses. Sound Vib. 104, 187–207 (1986)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (Projects # 1852510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Shabana.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldeeb, A.E., Zhang, D. & Shabana, A.A. Cross-section deformation, geometric stiffening, and locking in the nonlinear vibration analysis of beams. Nonlinear Dyn 108, 1425–1445 (2022). https://doi.org/10.1007/s11071-021-07102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07102-x

Keywords

Navigation