Skip to main content
Log in

Stationary and nonstationary nonlinear dynamics of the finite sine-lattice

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present the results of the analytical as well as numerical study of the stationary and nonstationary dynamics of the sine-lattice. The latter is the discrete constitutive model used in various fields of physics, in particular, for the description of flexible polymers, quasi-one-dimensional spin chains, biopolymers, etc. To analyze the sine-lattice dynamics, we introduce the complex functions that allow us to determine the nonlinear normal modes as the stationary solutions to the equations in the wide range of the oscillation amplitudes and the wavenumbers. We present the dispersion relations in the analytical form. Analysis of the slow nonstationary processes allows us to determine the conditions of energy localization in the chain. We observe a good agreement between the analytical and numerical values of the localization thresholds for the chains of different lengths. In the long-wavelength approximation, the sine-lattice is equivalent to the Frenkel–Kontorova model. We demonstrate in the continuum limit that the equation is reduced to the nonlinear Schrödinger equation instead of the well-known sine-Gordon equation. We reveal the conditions of the existence of a breather-like solution and reduce the analytical representation for the small-amplitude approximation. We consider nonstationary dynamics of the forced oscillations for the undamped system in terms of the limiting phase trajectory; its bifurcations determine the change of the oscillatory regimes. We discuss the effect of damping on the slow system dynamics. We also present the generalized equation for the stationary amplitude of the forced oscillations in the presence of the damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. It is in the contrast with the dependence, which has been obtained in the previous paper [22]. This discrepancy is caused by the difference in the normalizing occupation number X. Therefore, the dependences obtained in [22] should be associated with the amplitude of complex function \(\psi _j\) rather than the amplitude of the pendulums’ oscillations.

References

  1. Bogoliubov, N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  2. Braun, O.M., Kivshar, Y.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998)

    Article  MathSciNet  Google Scholar 

  3. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Springer, Berlin (2004)

    Book  Google Scholar 

  4. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.: Solitons and Nonlinear Wave Equations. Academic Press, New York (1992)

    MATH  Google Scholar 

  5. Esmailzadeh, E., Younesian, D., Askar, H.: Analytical Methods in Nonlinear Oscillations. Approaches and Applications. Springer, Dordrecht (2019). https://doi.org/10.1007/978-94-024-1542-1

    Book  MATH  Google Scholar 

  6. Flach, S., Wllis, C.: Discrete breathers. Phys. Rep. 295(5), 181–264 (1998)

    Article  MathSciNet  Google Scholar 

  7. Kovaleva, M., Smirnov, V., Manevitch, L.: Nonstationary dynamics of the sine lattice consisting of three pendula (trimer). Phys. Rev. E 99, 012209 (2019). https://doi.org/10.1103/PhysRevE.99.012209

    Article  MathSciNet  Google Scholar 

  8. Krylov, N., Bogoluibov, N.: Introduction to Non-linear Mechanics. Princeton University Press, Princeton (1943)

    Google Scholar 

  9. Leon, J., Manna, M.: Multiscale analysis of discrete nonlinear evolution equations. J. Phys. A Math. Gen. 32(15), 2845–2869 (1999). https://doi.org/10.1088/0305-4470/32/15/012

    Article  MathSciNet  MATH  Google Scholar 

  10. Malomed, B.A.: The Sine-Gordon Model: General Background, Physical Motivations, Inverse Scattering, and Solitons, pp. 1–30. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-06722-3

    Book  Google Scholar 

  11. Manevitch, L.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 3011 (2007)

    Article  Google Scholar 

  12. Manevitch, L.I., Romeo, F.: Non-stationary resonance dynamics of weakly coupled pendula. EPL (Europhys. Lett.) 112(3), 30005 (2015)

    Article  Google Scholar 

  13. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82, 036602 (2010)

    Article  MathSciNet  Google Scholar 

  14. Manevitch, L.I., Smirnov, V.V.: Resonant Energy Exchange in Nonlinear Oscillatory Chains and Limiting Phase Trajectories: From Small to Large System. CISM Courses and Lectures, vol. 518, pp. 207–258. Springer, New York (2010)

    Google Scholar 

  15. Manevitch, L.I., Smirnov, V.V.: Semi-inverse method in the nonlinear dynamics. In: Mikhlin, Y. (ed.) Proceedings of the 5th International Conference on Nonlinear Dynamics, September 27–30, 2016, Kharkov, Ukraine, pp. 28–37 (2016)

  16. Mazo, J.J., Ustinov, A.V.: The Sine-Gordon Equation in Josephson-Junction Arrays, pp. 155–175. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-06722-3

  17. Mickens, R.E.: Truly Nonlinear Oscillators: An Introduction to Harmonic Balance, Parameter Expansion, Iteration, and Averaging Methods. World Scientific Publishing Co., Pte. Ltd, Singapore (2010)

    Book  Google Scholar 

  18. Peyrard, M., Dauxois, T.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  19. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  20. Scott, A.C.: A nonlinear Klein–Gordon equation. Am. J. Phys. 37, 52–61 (1969)

    Article  Google Scholar 

  21. Scott, A.C.: Nonlinear Science: Emergence and Dynamics of Coherent Structures, 2nd edn. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  22. Smirnov, V.V., Kovaleva, M.A., Manevitch, L.I.: Nonlinear dynamics of torsion lattice. Rus. J. Nonlin. Dyn. (2018). https://doi.org/10.20537/nd180203

    Article  MathSciNet  MATH  Google Scholar 

  23. Smirnov, V.V., Manevitch, L.I.: Limiting phase trajectories and dynamic transitions in nonlinear periodic systems. Acoust. Phys. 57, 271 (2011)

    Article  Google Scholar 

  24. Smirnov, V.V., Manevitch, L.I.: Large-amplitude nonlinear normal modes of the discrete sine lattices. Phys. Rev. E 95, 022212 (2017)

    Article  MathSciNet  Google Scholar 

  25. Smirnov, V.V., Shepelev, D.S., Manevitch, L.I.: Localization of low-frequency oscillations in single-walled carbon nanotubes. Phys. Rev. Lett. 113, 135502 (2014). https://doi.org/10.1103/PhysRevLett.113.135502

    Article  Google Scholar 

  26. Takeno, S., Homma, S.: Topological solitons and modulated structure of bases in DNA double helices: a dynamic plane base-rotator model. Prog. Theor. Phys. 70(1), 308–311 (1983)

    Article  Google Scholar 

  27. Takeno, S., Homma, S.: A sine-lattice (sine-form discrete sine-Gordon) equation-one-and two-kink solutions and physical model. J. Phys. Soc. Jpn. 55(1), 65–75 (1986)

    Article  MathSciNet  Google Scholar 

  28. Takeno, S., Peyrard, M.: Nonlinear modes in coupled rotator models. Phys. D Nonlinear Phenom. 92(3), 140–163 (1996). https://doi.org/10.1016/0167-2789(95)00284-7

    Article  MATH  Google Scholar 

  29. Takeno, S., Peyrard, M.: Nonlinear rotating modes: Greens-function solution. Phys. Rev. E 55, 1922 (1997)

    Article  Google Scholar 

  30. Yakushevich, L.: Nonlinear Physics of DNA. Wiley, Weinheim (2004)

    Book  Google Scholar 

  31. Zhang, Z., Koroleva, I., Manevitch, L.I., Bergman, L.A., Vakakis, A.F.: Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice. Phys. Rev. E 94, 032214 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Russian Science Foundation (Grant 16-13-10302) for the financial supporting of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kovaleva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Multi-scale expansion

Substituting expression (7) into Eq. (6) and multiplying the latter by factor \(e^{i \omega \tau _0} \), we should keep the terms of lower orders of a small parameter. In such a case, we obtain:

$$\begin{aligned}&i\frac{\partial \psi _{j,0}}{\partial \tau _0}+i \varepsilon \frac{\partial \psi _{j,0}}{\partial \tau _1}+i \varepsilon \frac{\partial \psi _{j,1}}{\partial \tau _0}+ \varepsilon \mu e^{i \omega \tau _0 }\nonumber \\&\quad \Biggl ( \frac{\omega }{2} \left( \psi _{j,0} e^{-i \omega \tau _0 } + cc \right) + \sum _{k=0}^{\infty } \frac{\left( 2 \omega \right) ^{-(k+1)}}{(2 k+1)!}\nonumber \\&\quad \biggl [ \beta \biggl ( \left( \left( \psi _{j+1,0}-\psi _{j,0} \right) e^{-i \omega \tau _0 } + cc \right) ^{2 k+1} \nonumber \\&\quad -\left( \left( \psi _{j,0}-\psi _{j-1,0} \right) e^{-i \omega \tau _0 } + cc \right) ^{2 k+1} \biggr )\nonumber \\&\quad - \sigma \left( \psi _{j,0} e^{-i \omega \tau _0 } + cc \right) ^{2 k+1} \biggr ] \Biggr )=0. \end{aligned}$$
(A.1)

Separating the terms with different orders of \(\varepsilon \), we can write in zeroth order:

$$\begin{aligned} \varepsilon ^0: \; i\frac{\partial \psi _{j,0}}{\partial \tau _0}=0. \end{aligned}$$
(A.2)

Thus, function \(\psi _{j,0}\) does not depend on the fast time \(\tau _0\).

\( \varepsilon ^1:\)

$$\begin{aligned}&i\frac{\partial \psi _{j,1}}{\partial \tau _0}+ i\frac{\partial \psi _{j,0}}{\partial \tau _1}+ \mu \frac{\omega }{2} \psi _{j,0} + \mu \sum _{k=0}^{\infty } \frac{\left( 2 \omega \right) ^{-(k+1)}}{k! (k+1)!}\nonumber \\&\quad \biggl (\beta \biggl (| \psi _{j+1,0}-\psi _{j,0}|^{2k} \left( \psi _{j+1,0}-\psi _{j,0}\right) \nonumber \\&\quad - | \psi _{j,0}-\psi _{j-1,0}|^{2k} \left( \psi _{j,0}-\psi _{j-1,0}\right) \biggr )\nonumber \\&\quad - \sigma | \psi _{j,0}|^{2k} \psi _{j,0}\biggr )\nonumber \\&\quad + \mu \frac{\omega }{2} \psi ^*_{j,0} e^{2 i \tau _0 \omega } + \mu \sum _{k=0}^{\infty } \sum _{m \ne k}^{2k+1}\frac{\left( 2 \omega \right) ^{-(k+1)}}{m! (2 k-m+1)!} \nonumber \\&\quad \biggl ( \beta \left( \left( \psi ^{*}_{j+1,0}-\psi ^{*}_{j,0}\right) ^m \left( \psi _{j+1,0}-\psi _{j,0}\right) ^{2 k-m+1} \right. \nonumber \\&\quad \left. -\left( \psi ^*{}_{j,0}-\psi ^{*}_{j-1,0}\right) {}^m \left( \psi _{j,0}-\psi _{j-1,0}\right) {}^{2 k-m+1} \right) \nonumber \\&\quad -\sigma \psi _{j,0}^{2 k+1} \psi _{j,0} ^{*m} \biggr ) e^{-i 2 \tau _0 \omega (k-m+1)}=0. \end{aligned}$$
(A.3)

After integrating over fast time \(\tau _0\), the fast oscillating terms vanish. The terms that contain the main order function \(\psi _{j,0}\) do not depend on the fast time, and integrating leads to the secular term. Performing the summation, we get Eq. (8). So, we conclude that

$$\begin{aligned} i\frac{\partial \psi _{j,1}}{\partial \tau _0}=0. \end{aligned}$$
(A.4)

Appendix B: Integral of the occupation numbers

Using Eq. (13), we can receive evidence that the occupation number X is the integral of motion in the slow timescale:

$$\begin{aligned} i \frac{\partial X}{\partial \tau }= & {} i \sum _j{\left( \psi _j^*\frac{\partial \psi _j}{\partial \tau }+\psi _j \frac{\partial \psi _j^*}{\partial \tau } \right) }\nonumber \\= & {} \sum _j{\left( \psi _j^* \frac{\partial H}{\partial \psi _j^*}-\psi _j \frac{\partial H}{\partial \psi _j} \right) } \nonumber \\= & {} \sum _j{\left( \psi _j^* \frac{\partial H}{\partial X} \frac{\partial X}{\partial \psi _j^*}-\psi _j \frac{\partial H}{\partial X} \frac{\partial X}{\partial \psi _j} \right) }\nonumber \\= & {} \sum _j{\frac{\partial H}{\partial X} \left( \psi _j^* \psi _j-\psi _j \psi _j^* \right) } =0. \end{aligned}$$
(B.1)

It is easy to show that transformation (16) preserves the occupation number in the form (18):

$$\begin{aligned} X= & {} \sum _j{|\psi _j|^2}=\frac{1}{N}\sum _j \bigl ( \frac{1}{2}|\chi _1+\chi _2|^2\nonumber \\&+|\chi _1-\chi _2|^2\cos ^2{\left( \kappa j+\frac{\pi }{4}\right) }\nonumber \\&+ \left( \cos {\kappa j}-\sin {\kappa j} \right) |\chi _1-\chi _2|^2 \bigr )\nonumber \\= & {} \frac{1}{2} \left( |\chi _1+\chi _2|^2+|\chi _1-\chi _2|^2 \right) \nonumber \\= & {} |\chi _1|^2+|\chi _2|^2 \quad . \end{aligned}$$
(B.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, V.V., Kovaleva, M.A. & Manevitch, L.I. Stationary and nonstationary nonlinear dynamics of the finite sine-lattice. Nonlinear Dyn 107, 1819–1837 (2022). https://doi.org/10.1007/s11071-021-07085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07085-9

Keywords

Navigation