Skip to main content

Advertisement

Log in

Investigation on the 1:2 internal resonance of an FGM blade

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the internal resonance analysis of a functionally graded material (FGM) blade under centrifugal and aerodynamic forces. Based on von Karman large deflection geometry and Reddy third-order shear deformation theory, the ordinary differential equations for transverse vibration of the first two modes are formulated. The parameter conditions of internal resonances under different blade length, width, thickness, speed ratio and material composition are obtained. Accordingly, in the case of 1:2 internal resonance, the amplitude responses of the first two modes of the system affected by the material component parameter, rotation perturbation amplitude, air velocity are analyzed, respectively. A variety of nonlinear phenomena such as hardening spring characteristic, the frequency band variation of the response curve and nested regions of multi-stability are obtained, which are discussed in detail through the amplitude–frequency response diagrams of single oscillator solution and dual oscillator solution. Most prominently, for the dual oscillator solution, the whole amplitude–frequency response curve can be divided into two branches according to the second-order mode amplitude: One reflects the internal resonance energy transfer mechanism, and the other has the similar law to the single oscillator solution. Moreover, it can be found that the sensitivities of the two branches to different parameters are different. This finding indicates that the energy transfer in the internal resonance can be designed by adjusting the parameters. The results obtained will help to further understand the internal resonance behavior in the process of blade rotation and provide the basis for revealing the complex nonlinear behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Liu, T.R., Ren, Y.S.: Vibration and flutter of wind turbine blade modeled as anisotropic thin-walled closed-section beam. Sci. China Technol. Sci. 54(003), 715–722 (2011). https://doi.org/10.1007/s11431-010-4230-y

    Article  MATH  Google Scholar 

  2. Sun, J., Arteaga, I.L., Kari, L.: General shell model for a rotating pretwisted blade. J. Sound Vibr. 332(22), 5804–5820 (2013). https://doi.org/10.1016/j.jsv.2013.06.025

    Article  Google Scholar 

  3. Han, G., Chen, Y.: Principal resonance bifurcation of bending-torsion coupling of aero-engine compressor blade with assembled clearance under lateral displacement excitation of rotor shaft. Nonlinear Dyn. 78(3), 2049–2058 (2014). https://doi.org/10.1007/s11071-014-1547-2

    Article  Google Scholar 

  4. Han, G., Chen, Y., Wang, X.: Flutter analysis of bending-torsion coupling of aero-engine compressor blade with assembled clearance. Appl. Math. Modell. 39(9), 2539–2553 (2015). https://doi.org/10.1016/j.apm.2014.10.051

    Article  MathSciNet  MATH  Google Scholar 

  5. Xie, F., Ma, H., Cui, C., Wen, B.C.: Vibration response comparison of twisted shrouded blades using different impact models. J. Sound Vibr. 397, 171–191 (2017). https://doi.org/10.1016/j.jsv.2017.02.056

    Article  Google Scholar 

  6. Pollayi, H., Dineshkumar, H.: Unified continuum damage model for matrix cracking in composite rotor blades. AIP Conf. Proc. 1648, 360005 (2015). https://doi.org/10.1063/1.4912588

    Article  Google Scholar 

  7. Sinha, S.K., Zylka, R.P.: Vibration analysis of composite airfoil blade using orthotropic thin shell bending theory. Int. J. Mech. Sci. 121, 90–105 (2017). https://doi.org/10.1016/j.ijmecsci.2016.12.012

    Article  Google Scholar 

  8. Chen, J., Li, Q.S.: Vibration characteristics of a rotating pre-twisted composite laminated blade. Compos. Struct. 208, 78–90 (2019). https://doi.org/10.1016/j.compstruct.2018.10.005

    Article  Google Scholar 

  9. Wang, D., Chen, Y.S., Wiercigroch, M.: A three-degree-of-freedom model for vortex-induced vibrations of turbine blades. Meccanica 51(11), 2607–2628 (2016). https://doi.org/10.1007/s11012-016-0381-7

    Article  MathSciNet  Google Scholar 

  10. Wang, D., Chen, Y.S., Hao, Z.F.: Bifurcation analysis for vibrations of a turbine blade excited by air flows. Sci. China Technol. Sci. 59(8), 1217–1231 (2016). https://doi.org/10.1007/s11431-016-6064-8

    Article  Google Scholar 

  11. Wang, Z., Wu, H., Shi, Y.: Fluid-structure interaction and flutter analysis of compressor blade based on CFD/CSD. J. Aerosp. Power 26(5), 1077–1084 (2011). https://doi.org/10.3724/SP.J.1077.2011.11030

    Article  Google Scholar 

  12. Zhang, B., Zhang, Y.L., Yang, X.D., Chen, L.Q.: Saturation and stability in internal resonance of a rotating blade under thermal gradient. J. Sound Vibr. (2018). https://doi.org/10.1016/j.jsv.2018.10.012

    Article  Google Scholar 

  13. Zhang, Y.F., Niu, Y., Zhang, W.: Nonlinear vibrations and internal resonance of pretwisted rotating cantilever rectangular plate with varying cross-section and aerodynamic force. Eng. Struct. 225, 111259 (2020). https://doi.org/10.1016/j.engstruct.2020.111259

    Article  Google Scholar 

  14. Zhang, N., Khan, T., Guo, H., Shi, S., Zhong, W., Zhang, W.: Functionally graded materials: an overview of stability, buckling, and free vibration analysis. Adv. Mater. Sci. Eng. 2019, 1–18 (2019). https://doi.org/10.1155/2019/1354150

    Article  Google Scholar 

  15. Librescu, L., Oh, S.Y., Song, O.: Spinning thin-walled beams made of functionally graded materials: modeling, vibration and instability. Eur. J. Mech.-A/Solids 23(3), 499–515 (2004). https://doi.org/10.1016/j.euromechsol.2003.12.003

    Article  MATH  Google Scholar 

  16. Navazi, H.M., Haddadpour, H.: Aero-thermoelastic stability of functionally graded plates. Compos. Struct. 80(4), 580–587 (2007). https://doi.org/10.1016/j.compstruct.2006.07.014

    Article  MATH  Google Scholar 

  17. Ding, R., Wu, Z.Q.: Complex dynamics of functionally graded plates with thermal load in 1:2 internal resonance. Sci. China (Technol. Sci.) 53(3), 713–719 (2010). https://doi.org/10.1007/s11431-010-0076-6

    Article  MATH  Google Scholar 

  18. Inala, R., Mohanty, S.C.: Flap wise bending vibration and dynamic stability of rotating functionally graded material plates in thermal environments. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. (2016). https://doi.org/10.1177/0954410016636152

    Article  Google Scholar 

  19. Wang, Y.Q., Zu, J.W.: Nonlinear Dynamics of a Translational FGM Plate with Strong Mode Interaction. Int. J. Struct. Stabil. Dyn. (2017). https://doi.org/10.1142/S0219455418500311

    Article  Google Scholar 

  20. Parida, S., Mohanty, S.C.: Free vibration analysis of rotating functionally graded material plate under nonlinear thermal environment using higher order shear deformation theory. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. (2019). https://doi.org/10.1177/0954406218777535

    Article  Google Scholar 

  21. Kumar, R., Lal, A., Singh, B.N., Singh, J.: Non-linear analysis of porous elastically supported FGM plate under various loading. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2019.111721

    Article  Google Scholar 

  22. Tang, Y., Wang, T., Ma, Z.S., Yang, T.: Magneto-electro-elastic modelling and nonlinear vibration analysis of bi-directional functionally graded beams. Nonlinear Dyn. 105(3), 2195–2227 (2021). https://doi.org/10.1007/s11071-021-06656-0

    Article  Google Scholar 

  23. Hao, Y.X., Zhang, W., Yang, J.: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos.Part B 42(3), 402–413 (2011). https://doi.org/10.1016/j.compositesb.2010.12.010

    Article  Google Scholar 

  24. Niu, Y., Zhang, W., Guo, X.Y.: Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets. Eur. J. Mech.-A/Solids 77, 103798 (2019). https://doi.org/10.1016/j.euromechsol.2019.103798

    Article  MathSciNet  MATH  Google Scholar 

  25. Gu, X.J., Zhang, W., Zhang, Y.F.: Nonlinear Vibrations of Rotating Pretwisted Composite Blade Reinforced by Functionally Graded Graphene Platelets Under Combined Aerodynamic Load and Air Flow in Tip Clearance. Nonlinear Dyn. 105, 1503–1532 (2021). https://doi.org/10.1007/s11071-021-06681-z

    Article  Google Scholar 

  26. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47(1–3), 663–684 (2000). https://doi.org/10.1002(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8

  27. Kou, H., Yuan, H.: Rub-induced non-linear vibrations of a rotating large deflection plate. Int. J. Non-Linear Mechan. 58, 283–294 (2014). https://doi.org/10.1016/j.ijnonlinmec.2013.10.005

    Article  Google Scholar 

  28. Yao, M.H., Ma, L., Zhang, W.: Nonlinear dynamics of the high-speed rotating plate. Int. J. Aerosp. Eng. 2018, 1–23 (2018). https://doi.org/10.1155/2018/5610915

    Article  Google Scholar 

  29. Tang, D.M., Dowell, E.H., Hall, K.C.: Limit cycle oscillations of a cantilevered wing in low subsonic flow. AIAA J. 37(3), 364–371 (1999). https://doi.org/10.2514/3.14174

    Article  Google Scholar 

  30. Gu, X.J., Hao, Y.X., Zhang, W., Liu, L.T., Chen, J.: Free vibration of rotating cantilever pre-twisted panel with initial exponential function type geometric imperfection. Appl. Math. Modell. 68, 327–352 (2019). https://doi.org/10.1016/j.apm.2018.11.037

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

It is very grateful for the financial supports from the National Natural Science Foundation of China (Nos. 11972129, 11732005) and the National Major Science and Technology Projects of China (No. 2017-IV-0008-0045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The coefficients in Eq. (18a) are given as follows

$$\begin{aligned} {a_1}&= 1,\,{a_2} = \frac{{{a^2}}}{{{b^2}}}\frac{{{\bar{A}_{66}}}}{{{\bar{A}_{11}}}},\,\\{a_3}&= \frac{{{\bar{A}_{12}} + {\bar{A}_{66}}}}{{{\bar{A}_{11}}}},\,{a_4} = - \frac{{{h^2}}}{{{a^2}}}\frac{{{\bar{E}_{11}}{\bar{c}_1}}}{{{\bar{A}_{11}}}},\,\\ {a_5}&= \frac{{{h^2}}}{{{b^2}}}\left( \frac{{ - {\bar{E}_{12}}{\bar{c}_1} - 2{\bar{E}_{66}}{\bar{c}_1}}}{{{\bar{A}_{11}}}}\right) ,\,{a_6} = \frac{{{h^2}}}{{{a^2}}},\,\\ {a_7}&= \frac{{{h^2}}}{{{b^2}}}\frac{{{\bar{A}_{66}}}}{{{\bar{A}_{11}}}},\\ {a_8}&= \frac{{{h^2}}}{{{b^2}}}\frac{{{\bar{A}_{12}} + {\bar{A}_{66}}}}{{{\bar{A}_{11}}}},\,\\ {a_9}&= \frac{h}{a}(\frac{{{\bar{B}_{11}} - {\bar{E}_{11}}{\bar{c}_1}}}{{{\bar{A}_{11}}}}),\,\\ {a_{10}}&= \frac{{ah}}{{{b^2}}}(\frac{{{\bar{B}_{66}} - {\bar{E}_{66}}{\bar{c}_1}}}{{{\bar{A}_{11}}}}),\,\\ {a_{11}}&= \frac{h}{b}\left( \frac{{{\bar{B}_{12}} + {\bar{B}_{66}} - {\bar{E}_{66}}{\bar{c}_1} - {\bar{E}_{12}}{\bar{c}_1}}}{{{\bar{A}_{11}}}}\right) ,\\ {a_{12}}&= \frac{{{a^2}}}{{{h^2}}}\frac{{{\bar{I}_0}}}{{{\bar{A}_{11}}}},\,\\{a_{13}}&= - \frac{{ab\sqrt{ab} }}{{{h^3}}}\frac{{{\bar{I}_3}{\bar{c}_1}}}{{{\bar{A}_{11}}}},\\{a_{14}}&= \frac{{a\sqrt{ab} }}{{{h^2}}}\left( \frac{{{\bar{I}_1}}}{{{\bar{A}_{11}}}} - \frac{{ab{\bar{I}_3}{\bar{c}_1}}}{{{h^2}{\bar{A}_{11}}}}\right) ,\\{a_{15}}&= \frac{a}{{{h^2}}}\frac{{{\bar{I}_0}}}{{{\bar{A}_{11}}}}({R_0} + a\bar{x})\\ {b_1}&= 1,\,{b_2} = \frac{{{a^2}}}{{{b^2}}}\frac{{{\bar{A}_{11}}}}{{{\bar{A}_{66}}}},\\{b_3}&= \frac{{{a^2}}}{{{b^2}}}\frac{{{\bar{A}_{12}} + {\bar{A}_{66}}}}{{{\bar{A}_{66}}}},\\{b_4}&= - \frac{{{a^2}{h^2}}}{{{b^4}}}\frac{{{\bar{E}_{11}}{\bar{c}_1}}}{{{\bar{A}_{66}}}},\\{b_5}&= \frac{{{h^2}}}{{{b^2}}}\left( \frac{{ - {\bar{E}_{12}}{\bar{c}_1} - 2{\bar{E}_{66}}{\bar{c}_1}}}{{{\bar{A}_{66}}}}\right) ,\\ {b_6}&= \frac{{{h^2}}}{{{b^2}}}\frac{{{\bar{A}_{12}} + {\bar{A}_{66}}}}{{{\bar{A}_{66}}}},\\{b_7}&= \frac{{{a^2}{h^2}}}{{{b^4}}}\frac{{{\bar{A}_{11}}}}{{{\bar{A}_{66}}}},\\{b_8}&= \frac{{{h^2}}}{{{b^2}}},\,{b_9} = \frac{{ah}}{{{b^2}}}\left( \frac{{{\bar{B}_{12}} + {\bar{B}_{66}} - {\bar{E}_{66}}{\bar{c}_1} - {\bar{E}_{12}}{\bar{c}_1}}}{{{\bar{A}_{66}}}}\right) ,\\{b_{10}}&= \frac{h}{b}\left( \frac{{{\bar{B}_{66}} - {\bar{E}_{66}}{\bar{c}_1}}}{{{\bar{A}_{66}}}}\right) ,\\ {b_{11}}&= \frac{{{a^2}h}}{{{b^3}}}\left( \frac{{{\bar{B}_{11}} - {\bar{E}_{11}}{\bar{c}_1}}}{{{\bar{A}_{66}}}}\right) ,\\{b_{12}}&= \frac{{{a^2}}}{{{h^2}}}\frac{{{\bar{I}_0}}}{{{\bar{A}_{66}}}},\\{b_{13}}&= - \frac{a}{{{h^2}}}\frac{{{\bar{I}_0}}}{{{\bar{A}_{66}}}}({R_0} + a\bar{x}),\\{b_{14}}&= \frac{a}{{{h^2}}}\frac{{{\bar{I}_0}}}{{{\bar{A}_{66}}}}({R_0} + \frac{a}{2} - {R_0}\bar{x} - \frac{a}{2}{\bar{x}^2}),\\ {b_{15}}&= - \frac{{{a^3}\sqrt{ab} }}{{b{h^3}}}\frac{{{\bar{I}_3}{\bar{c}_1}}}{{{\bar{A}_{66}}}},\\{b_{16}}&= \frac{{{a^2}\sqrt{ab} }}{{b{h^2}}}\left( \frac{{{\bar{I}_1}}}{{{\bar{A}_{66}}}} - \frac{{ab{\bar{I}_3}{\bar{c}_1}}}{{{h^2}{\bar{A}_{11}}}}\right) ,\,{b_{17}} = \frac{{{a^2}}}{{{h^2}}}\frac{{{\bar{I}_0}}}{{{\bar{A}_{66}}}}\\ {\lambda _1}&= {\bar{H}_{11}}{\bar{c}_1}^2 - 2{\bar{F}_{11}}{\bar{c}_1} + {\bar{D}_{11}}\\ {d_1}&= - 1,\,{d_2} = \frac{{{a^2}}}{{{\lambda _1}{b^2}}}( - {\bar{H}_{66}}{\bar{c}_1}^2 + 2{\bar{F}_{66}}{\bar{c}_1} - {\bar{D}_{66}}),\\{d_3}&= \frac{{{a^2}}}{{{\lambda _1}{h^2}}}(9{\bar{F}_{66}}{\bar{c}_1}^2 - 6{\bar{D}_{66}}{\bar{c}_1} + {\bar{A}_{66}}),\\ {d_4}&= \frac{a}{{{\lambda _1}b}}( - {\bar{D}_{12}} - {\bar{D}_{66}}\\&\quad - {\bar{H}_{12}}{\bar{c}_1}^2 - {\bar{H}_{66}}{\bar{c}_1}^2 + 2{\bar{F}_{12}}{\bar{c}_1} + 2{\bar{F}_{66}}{\bar{c}_1}),\\{d_5}&= \frac{a}{{{\lambda _1}h}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\\ {d_6}&= \frac{{{a^3}}}{{{\lambda _1}{b^2}h}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}),\,\\ {d_7}&= \frac{a}{{{\lambda _1}h}}({\bar{E}_{12}}{\bar{c}_1} + {\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{12}} - {\bar{B}_{66}}),\\{d_8}&= \frac{h}{{{\lambda _1}a}}( - {\bar{H}_{11}}{\bar{c}_1}^2 + {\bar{F}_{11}}{\bar{c}_1}),\\ {d_9}&= \frac{{ah}}{{{\lambda _1}{b^2}}}\left( - {\bar{H}_{12}}{\bar{c}_1}^2 - 2{\bar{H}_{66}}{\bar{c}_1}^2 + {\bar{F}_{12}}{\bar{c}_1} + 2{\bar{F}_{66}}{\bar{c}_1}\right) ,\\{d_{10}}&= \frac{h}{{{\lambda _1}a}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\,{d_{11}} = \frac{{ah}}{{{\lambda _1}{b^2}}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}),\\ {d_{12}}&= \frac{{ah}}{{{\lambda _1}{b^2}}}({\bar{E}_{12}}{\bar{c}_1} + {\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{12}} - {\bar{B}_{66}}),\,{d_{13}}\\&= \frac{a}{{{\lambda _1}h}}(9{\bar{F}_{66}}{\bar{c}_1}^2 - 6{\bar{D}_{66}}{\bar{c}_1} + {\bar{A}_{66}}),\\ {d_{14}}&= \frac{{{a^3}b}}{{{\lambda _1}{h^4}}}\left( - {\bar{I}_2} + \frac{{2ab{\bar{I}_4}{\bar{c}_1}}}{{{h^2}}} - \frac{{{a^2}{b^2}{\bar{I}_6}{\bar{c}_1}^2}}{{{h^4}}}\right) ,\\{d_{15}}&= \frac{{{a^3}\sqrt{ab} }}{{{\lambda _1}{h^4}}}(\frac{{ab{\bar{I}_3}{\bar{c}_1}}}{{{h^2}}} - {\bar{I}_1}),\\{d_{16}}&= \frac{{{a^3}{b^2}}}{{{\lambda _1}{h^5}}}({\bar{I}_4}{\bar{c}_1} - \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}),\\ {d_{17}}&= \frac{{{a^2}\sqrt{ab} }}{{{\lambda _1}{h^4}}}\Bigg ( - {R_0}{\bar{I}_1} + \frac{{ab{R_0}{\bar{I}_3}{\bar{c}_1}}}{{{h^2}}} - a{\bar{I}_1}\bar{x} \\&\quad + \frac{{{a^2}b{\bar{I}_3}{\bar{c}_1}}}{{{h^2}}}\bar{x}\Bigg )\\ {e_1}&= - 1,\,{e_2} = \frac{{{b^2}}}{{{\lambda _1}{a^2}}}( - {\bar{H}_{66}}{\bar{c}_1}^2 + 2{\bar{F}_{66}}{\bar{c}_1} - {\bar{D}_{66}}),\,{e_3}\\&= \frac{{{b^2}}}{{{\lambda _1}{h^2}}}(9{\bar{F}_{66}}{\bar{c}_1}^2 - 6{\bar{D}_{66}}{\bar{c}_1} + {\bar{A}_{66}}),\,\\ {e_4}&= \frac{b}{{{\lambda _1}a}}( - {\bar{D}_{12}} - {\bar{D}_{66}} - {\bar{H}_{12}}{\bar{c}_1}^2 - {\bar{H}_{66}}{\bar{c}_1}^2 + 2{\bar{F}_{12}}{\bar{c}_1} \nonumber \\ {}&\quad + 2{\bar{F}_{66}}{\bar{c}_1}),\,{e_5}\\&= \frac{b}{{{\lambda _1}h}}({\bar{E}_{12}}{\bar{c}_1} + {\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{12}} - {\bar{B}_{66}}),\,\\ {e_6}&= \frac{{{b^3}}}{{{\lambda _1}{a^2}h}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}),\,{e_7} = \frac{b}{{{\lambda _1}h}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\,\\{e_8}&= \frac{{bh}}{{{\lambda _1}{a^2}}}( - {\bar{H}_{12}}{\bar{c}_1}^2 - 2{\bar{H}_{66}}{\bar{c}_1}^2 + {\bar{F}_{12}}{\bar{c}_1} + 2{\bar{F}_{66}}{\bar{c}_1}),\,\\ {e_9}&= \frac{h}{{{\lambda _1}b}}( - {\bar{H}_{11}}{\bar{c}_1}^2 + {\bar{F}_{11}}{\bar{c}_1}),\,{e_{10}}\\&= \frac{{bh}}{{{\lambda _1}{a^2}}}({\bar{E}_{12}}{\bar{c}_1} + {\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{12}} - {\bar{B}_{66}}),\,{e_{11}}\\&= \frac{h}{{{\lambda _1}b}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\\ {e_{12}}&= \frac{{bh}}{{{\lambda _1}{a^2}}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}),\nonumber \\ {}&\quad \,{e_{13}} = \frac{b}{{{\lambda _1}h}}(9{\bar{F}_{66}}{\bar{c}_1}^2 - 6{\bar{D}_{66}}{\bar{c}_1} + {\bar{A}_{66}}),\,\\{e_{14}}&= \frac{{a{b^3}}}{{{\lambda _1}{h^4}}}\left( - {\bar{I}_2} + \frac{{2ab{\bar{I}_4}{\bar{c}_1}}}{{{h^2}}} - \frac{{{a^2}{b^2}{\bar{I}_6}{\bar{c}_1}^2}}{{{h^4}}}\right) ,\,\\ {e_{15}}&= \frac{{{b^3}\sqrt{ab} }}{{{\lambda _1}{h^4}}}\left( \frac{{ab{\bar{I}_3}{\bar{c}_1}}}{{{h^2}}} - {\bar{I}_1}\right) ,\,\nonumber \\ {}&\quad {e_{16}} = \frac{{{a^2}{b^3}}}{{{\lambda _1}{h^5}}}\left( {\bar{I}_4}{\bar{c}_1} - \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\\{e_{17}}&= \frac{{{b^3}\sqrt{ab} }}{{{\lambda _1}{h^4}}}\left( - {\bar{I}_1}\bar{y} + \frac{{ab{\bar{I}_3}{\bar{c}_1}}}{{{h^2}}}\bar{y}\right) \end{aligned}$$

The transverse dimensionless equation is expressed as

$$\begin{aligned}&{c_1}{\bar{\varphi ''}_{y,y}} + {c_2}{\bar{\varphi }_{y,y}} + {c_3}{\bar{\varphi }_{x,x}} + {c_4}{\bar{\varphi ''}_{x,x}} + {c_5}{\bar{\varphi }_{x,xxx}} \nonumber \\&\quad + ({c_6}{\bar{\varphi }_{x,y}}\nonumber \\\&\quad + {c_7}{\bar{\varphi }_{y,x}} - {c_8}{\bar{u}_{0,y}} - {c_9}{\bar{v}_{0,x}}\nonumber \\&\quad + {c_{10}}{\bar{w}_{0,x}}{\bar{w}_{0,y}}){\bar{w}_{0,xy}}\nonumber \\&\quad + {c_{11}}{\bar{u}_{0,xyy}} + ({c_{12}}{\bar{\varphi }_{y,y}}\nonumber \\&\quad + {c_{13}}{\bar{w}_{0,x}} + {c_{14}}{\bar{w}_{0,xx}} + {c_{15}}{\bar{w}_{0,yy}} + {c_{16}}{\bar{\varphi }_{x,x}} - {c_{17}}\nonumber \\&\quad - {c_{18}}{\bar{v}_{0,y}} - {c_{19}}{\bar{u}_{0,x}}){\bar{\Omega }^2}\nonumber \\&\quad + ({c_{20}}{\bar{w}_{0,yy}} + {c_{21}}{\bar{\varphi }_{x,x}}\nonumber \\&\quad + {c_{22}}{\bar{\varphi }_{y,y}} - {c_{23}}{\bar{u}_{0,x}} - {c_{24}}{\bar{v}_{0,y}}\nonumber \\&\quad - {c_{25}}\bar{w}_{0,x}^2 + {c_{26}}\bar{w}_{0,y}^2 + {c_{27}}){\bar{w}_{0,xx}}\nonumber \\&\quad + ({c_{28}}{\bar{\varphi }_{x,x}} + {c_{29}}{\bar{\varphi }_{y,y}}\nonumber \\&\quad - {c_{30}}{\bar{u}_{0,x}} - {c_{31}}{\bar{v}_{0,y}} + {c_{32}}\bar{w}_{0,x}^2\nonumber \\&\quad + {c_{33}} - {c_{34}}\bar{w}_{0,y}^2){\bar{w}_{0,yy}}\nonumber \\&\quad + ({c_{35}}{\bar{v'}_{0,x}} + {c_{36}}{\bar{u'}_{0,y}}\nonumber \\&\quad + {c_{37}}{\bar{\varphi '}_{x,y}} + {c_{38}}{\bar{\varphi '}_{y,x}})\bar{\Omega }+ {c_{39}}\bar{w}_{0,xy}^2 - {c_{40}}{\bar{w}_{0,y}}{\bar{v}_{0,xx}}\nonumber \\&\quad - {c_{41}}{\bar{w''}_{0,yy}} - {c_{42}}{\bar{w''}_{0,xx}}\nonumber \\&\quad + ({c_{43}}{\bar{\varphi }_{x,y}} + {c_{44}}{\bar{\varphi }_{y,x}}\nonumber \\&\quad + {c_{45}}{\bar{u}_{0,y}} - {c_{46}}{\bar{v}_{0,x}})\bar{\Omega }' + {c_{47}}{\bar{v}_{0,xxy}} + {c_{48}}{\bar{w}_{0,xxyy}}\nonumber \\&\quad + {c_{49}}{\bar{\varphi }_{x,xyy}} + {c_{50}}{\bar{\varphi }_{y,xxy}}\nonumber \\&\quad + {c_{51}}{\bar{\varphi }_{y,yyy}} + {c_{52}}{\bar{w''}_0}\nonumber \\&\quad + {c_{53}}{\bar{w}_{0,y}}{\bar{u}_{0,xy}} + {c_{54}}{\bar{w}_{0,x}}{\bar{v}_{0,xy}}\nonumber \\&\quad + {c_{55}}{\bar{w}_{0,y}}{\bar{\varphi }_{y,yy}}\nonumber \\&\quad + {c_{56}}{\bar{w}_{0,x}}{\bar{\varphi }_{y,xy}}\nonumber \\&\quad + {c_{57}}{\bar{w}_{0,x}}{\bar{\varphi }_{x,yy}}\nonumber \\&\quad + {c_{58}}{\bar{w}_{0,y}}{\bar{\varphi }_{y,xx}}\nonumber \\&\quad + {c_{59}}{\bar{w}_{0,y}}{\bar{\varphi }_{x,xy}}\nonumber \\&\quad + {c_{60}}{\bar{w}_{0,x}}{\bar{\varphi }_{x,xx}} + {c_{61}}{\bar{w}_{0,xxxx}}\nonumber \\&\quad + {c_{62}}{\bar{w}_{0,yyyy}} - {c_{63}}{\bar{v}_{0,yyy}}\nonumber \\&\quad - {c_{64}}{\bar{u}_{0,xxx}}\nonumber \\&\quad - {c_{65}}{\bar{w}_{0,x}}{\bar{u}_{0,yy}} - {c_{66}}{\bar{w}_{0,y}}{\bar{v}_{0,yy}}\nonumber \\&\quad - {c_{67}}{\bar{w}_{0,x}}{\bar{u}_{0,xx}} + {c_{68}}{\bar{u''}_{0,x}}\nonumber \\&\quad + {c_{69}}{\bar{v''}_{0,y}} - {c_{70}}({c_{701}}{q_1}{\bar{w}_{0,y}} + {c_{702}}{q_2}{\bar{w'}_0}) = 0 \end{aligned}$$
(A-1)

where coefficients are given as follows

$$\begin{aligned} {\lambda _2}&= 9{\bar{F}_{66}}{\bar{c}_1}^2\\&- 6{\bar{D}_{66}}{\bar{c}_1} + {\bar{A}_{66}}\\ {c_1}&= \frac{{{a^4}b}}{{{\lambda _2}{h^5}}}\left( {\bar{I}_4}{\bar{c}_1} - \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\\ {c_2}&= - \frac{{{a^2}}}{{bh}},{c_3} = - \frac{a}{h},\\ {c_4}&= \frac{{{a^3}{b^2}}}{{{\lambda _2}{h^5}}}\left( {\bar{I}_4}{\bar{c}_1} - \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\\ {c_5}&= \frac{h}{{{\lambda _2}a}}\left( {\bar{H}_{11}}{\bar{c}_1}^2 - {\bar{F}_{11}}{\bar{c}_1}\right) ,\\ {c_6}&= \frac{{2ah}}{{{\lambda _2}{b^2}}}\left( {\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}\right) ,\\ {c_7}&= \frac{{2h}}{{{\lambda _2}b}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}),\\ {c_8}&= \frac{{2{a^2}}}{{{\lambda _2}{b^2}}}{\bar{A}_{66}},\\ {c_9}&= \frac{2}{{{\lambda _2}}}{\bar{A}_{66}},{c_{10}} = \frac{{2{h^2}}}{{{\lambda _2}{b^2}}}( - {\bar{A}_{12}} - 2{\bar{A}_{66}})\\ {c_{11}}&= \frac{{{a^2}}}{{{\lambda _2}{b^2}}}( - 2{\bar{E}_{66}}{\bar{c}_1} - {\bar{E}_{12}}{\bar{c}_1}),\\ {c_{12}}&= \frac{{{a^4}b}}{{{\lambda _2}{h^5}}}( - {\bar{I}_4}{\bar{c}_1}\\&\quad + \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}),{c_{13}} = \frac{a}{{{\lambda _2}{h^2}}}({\bar{I}_0}{R_0} + a{\bar{I}_0}\bar{x}),\\ {c_{14}}&= \frac{a}{{{\lambda _2}{h^2}}}\Bigg (\frac{{a{\bar{I}_0}{\bar{x}^2} - a{\bar{I}_0} - 2{\bar{I}_0}{R_0} + 2{\bar{I}_0}{R_0}\bar{x}}}{2}\\&\quad + \frac{{{a^2}{b^3}{\bar{I}_6}{\bar{c}_1}^2}}{{{h^4}}}\Bigg ),\\ {c_{15}}&= \frac{{{a^5}b}}{{{\lambda _2}{h^6}}}{\bar{I}_6}{\bar{c}_1}^2,{c_{16}} = \frac{{{a^3}{b^2}}}{{{\lambda _2}{h^5}}}\left( - {\bar{I}_4}{\bar{c}_1} + \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\nonumber \\ {}&\quad {c_{17}} = \frac{{2{a^3}b\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{18}}&= \frac{{{a^3}b\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{19}}&= \frac{{{a^3}b\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{20}}&= \frac{{2{h^2}}}{{{\lambda _2}{b^2}}}( - {\bar{E}_{66}}{\bar{c}_1} + {\bar{E}_{12}}{\bar{c}_1}),\nonumber \\&\quad {c_{21}} = \frac{h}{{{\lambda _2}a}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\\ {c_{22}}&= \frac{h}{{{\lambda _2}b}}({\bar{E}_{12}}{\bar{c}_1} - {\bar{B}_{12}}),\\ {c_{23}}&= \frac{1}{{{\lambda _2}}}{\bar{A}_{11}},{c_{24}} = \frac{1}{{{\lambda _2}}}{\bar{A}_{12}}, \end{aligned}$$
$$\begin{aligned} {c_{25}}&= \frac{{3{h^2}}}{{2{\lambda _2}{a^2}}}{\bar{A}_{11}},\\ {c_{26}}&= \frac{1}{{{\lambda _2}}}\left( - {\bar{A}_{66}} - \frac{{{\bar{A}_{12}}}}{2}\right) ,\\ {c_{27}}&= - 1,{c_{28}} = \frac{{ah}}{{{\lambda _2}{b^2}}}({\bar{E}_{12}}{\bar{c}_1} - {\bar{B}_{12}}),\\ {c_{29}}&= \frac{{{a^2}h}}{{{\lambda _2}{b^3}}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\\ {c_{30}}&= \frac{{{a^2}}}{{{\lambda _2}{b^2}}}{\bar{A}_{12}},\\ {c_{31}}&= \frac{{{a^2}}}{{{\lambda _2}{b^2}}}{\bar{A}_{11}},\\ {c_{32}}&= \frac{{{h^2}}}{{{\lambda _2}{b^2}}}( - {\bar{A}_{66}} - \frac{{{\bar{A}_{12}}}}{2}),\\ {c_{33}}&= - \frac{{{a^2}}}{{{b^2}}},{c_{34}} = \frac{{3{a^2}{h^2}}}{{2{\lambda _2}{b^4}}}{\bar{A}_{11}},\\ {c_{35}}&= - \frac{{2{a^2}{b^2}\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{36}}&= \frac{{2{a^4}\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{37}}&= \frac{{2{a^4}b}}{{{\lambda _2}{h^5}}}\left( {\bar{I}_4}{\bar{c}_1} - \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\\ {c_{38}}&= \frac{{2{a^3}{b^2}}}{{{\lambda _2}{h^5}}}\left( {\bar{I}_4}{\bar{c}_1} - \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\\ {c_{39}}&= \frac{{2{h^2}}}{{{\lambda _2}{b^2}}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{E}_{12}}{\bar{c}_1}),\\ {c_{40}}&= \frac{1}{{{\lambda _2}}}{\bar{A}_{66}},{c_{41}} = \frac{{{a^5}b}}{{{\lambda _2}{h^6}}}{\bar{I}_6}{\bar{c}_1}^2,\\ {c_{42}}&= \frac{{{a^3}{b^3}}}{{{\lambda _2}{h^6}}}{\bar{I}_6}{\bar{c}_1}^2,\\ {c_{43}}&= \frac{{{a^4}b}}{{{\lambda _2}{h^5}}}\left( {\bar{I}_4}{\bar{c}_1} - \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\\ {c_{44}}&= \frac{{{a^3}{b^2}}}{{{\lambda _2}{h^5}}}\left( - {\bar{I}_4}{\bar{c}_1} + \frac{{ab{\bar{I}_6}{\bar{c}_1}^2}}{{{h^2}}}\right) ,\\ {c_{45}}&= \frac{{{a^4}\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{46}}&= \frac{{{a^2}{b^2}\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{47}}&= \frac{1}{{{\lambda _2}}}( - 2{\bar{E}_{66}}{\bar{c}_1} - {\bar{E}_{12}}{\bar{c}_1}),\\ {c_{48}}&= \frac{{2{h^2}}}{{{\lambda _2}{b^2}}}({\bar{H}_{12}}{\bar{c}_1}^2 + 2{\bar{H}_{66}}{\bar{c}_1}^2),\\ {c_{49}}&= \frac{{ah}}{{{\lambda _2}{b^2}}}({\bar{H}_{12}}{\bar{c}_1}^2 - 2{\bar{F}_{66}}{\bar{c}_1} - {\bar{F}_{12}}{\bar{c}_1} + 2{\bar{H}_{66}}{\bar{c}_1}^2),\\ {c_{50}}&= \frac{h}{{{\lambda _2}b}}({\bar{H}_{12}}{\bar{c}_1}^2 - 2{\bar{F}_{66}}{\bar{c}_1} - {\bar{F}_{12}}{\bar{c}_1} + 2{\bar{H}_{66}}{\bar{c}_1}^2),\\ {c_{51}}&= \frac{{{a^2}h}}{{{\lambda _2}{b^3}}}({\bar{H}_{11}}{\bar{c}_1}^2 - {\bar{F}_{11}}{\bar{c}_1}),\\ {c_{52}}&= \frac{{{a^2}}}{{{\lambda _2}{h^2}}}{\bar{I}_0},\\ {c_{53}}&= \frac{{{a^2}}}{{{\lambda _2}{b^2}}}( - {\bar{A}_{12}} - {\bar{A}_{66}}),\\ {c_{54}}&= \frac{1}{{{\lambda _2}}}( - {\bar{A}_{12}} - {\bar{A}_{66}}),\\ {c_{55}}&= \frac{{{a^2}h}}{{{\lambda _2}{b^3}}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\\ {c_{56}}&= \frac{h}{{{\lambda _2}b}}({\bar{E}_{12}}{\bar{c}_1} + {\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{12}} - {\bar{B}_{66}}),\\ {c_{57}}&= \frac{{ah}}{{{\lambda _2}{b^2}}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}),\\ {c_{58}}&= \frac{h}{{{\lambda _2}b}}({\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{66}}),\\ {c_{59}}&= \frac{{ah}}{{{\lambda _2}{b^2}}}({\bar{E}_{12}}{\bar{c}_1} + {\bar{E}_{66}}{\bar{c}_1} - {\bar{B}_{12}} - {\bar{B}_{66}}),\\ {c_{60}}&= \frac{h}{{{\lambda _2}a}}({\bar{E}_{11}}{\bar{c}_1} - {\bar{B}_{11}}),\\ {c_{61}}&= \frac{{{h^2}}}{{{\lambda _2}{a^2}}}{\bar{H}_{11}}{\bar{c}_1}^2,\\ {c_{62}}&= \frac{{{a^2}{h^2}}}{{{\lambda _2}{b^4}}}{\bar{H}_{11}}{\bar{c}_1}^2,\\ {c_{63}}&= \frac{{{a^2}}}{{{\lambda _2}{b^2}}}{\bar{E}_{11}}{\bar{c}_1},\\ {c_{64}}&= \frac{1}{{{\lambda _2}}}{\bar{E}_{11}}{\bar{c}_1},{c_{65}} = \frac{{{a^2}}}{{{\lambda _2}{b^2}}}{\bar{A}_{66}},\\ {c_{66}}&= \frac{{{a^2}}}{{{\lambda _2}{b^2}}}{\bar{A}_{11}},{c_{67}} = \frac{1}{{{\lambda _2}}}{\bar{A}_{11}},\\ {c_{68}}&= \frac{{{a^3}b\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},{c_{69}} = \frac{{{a^3}b\sqrt{ab} }}{{{\lambda _2}{h^5}}}{\bar{I}_3}{\bar{c}_1},\\ {c_{70}}&= \frac{{{a^2}\sqrt{ab} }}{{{E_m}{\lambda _2}{h^3}}},{c_{701}} = \frac{h}{b}{E_m},{c_{702}} = \frac{h}{{\sqrt{ab} }}{E_m} \end{aligned}$$

The relationship between \(\bar{u_1}\), \(\bar{u_2}\), \(\bar{v_1}\), \(\bar{v_2}\), \(\bar{\varphi _{11}}\), \(\bar{\varphi _{12}}\), \(\bar{\varphi _{21}}\), \(\bar{\varphi _{22}}\) and \(\bar{w_1}\), \(\bar{w_2}\) takes the following form

$$\begin{aligned} \pmb {P}_1 = \pmb {K}\pmb {P}_2 \end{aligned}$$
(A-2)

where \(\pmb {P}_1 = \begin{bmatrix}{\bar{u}_1}&{\bar{u}_2}&{\bar{v}_1}&{\bar{v}_2}&{\bar{\varphi }_{11}}&{\bar{\varphi }_{12}}&{\bar{\varphi }_{21}}&{\bar{\varphi }_{22}}\end{bmatrix}^T\), \(\pmb {P}_2 = \begin{bmatrix}{\bar{w}_1}&{\bar{w}_2}&{\bar{w}_1}{\bar{w}_2}&\bar{w_1^2}&\bar{w_2^2}&1\end{bmatrix}^T\) and \(\pmb {K} = \begin{bmatrix} {{k_{11}}}&{}{{k_{12}}}&{} \cdots &{}{{k_{16}}}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {{k_{41}}}&{}{{k_{42}}}&{} \cdots &{}{{k_{46}}}\\ {{k_{71}}}&{}{{k_{72}}}&{} \cdots &{}{{k_{76}}}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {{k_{101}}}&{}{{k_{102}}}&{} \cdots &{}{{k_{106}}} \end{bmatrix}_{8 \times 6}\). Substituting Eq. (A-2) into Eq. (A-1), Eq. (A-1) can be written as

$$\begin{aligned} \int _0^1 {\int _0^1 {f({\bar{w}_1}^{\prime \prime },\,{\bar{w}_2}^{\prime \prime },\,{\bar{w}_1}^\prime ,\,{\bar{w}_2}^{\prime },\,{\bar{w}_1},\,{\bar{w}_2}{\mathrm{, }}\bar{x},\,\bar{y})} C{C_i}{\mathrm{d}}} \bar{y}{\mathrm{d}}\bar{x} = 0 \end{aligned}$$
(A-3)

where \(C{C_i} = {\varphi _i}(\bar{x}){\psi _i}(\bar{y})\), \((i = 1,2)\). The coefficient of each term in Eq. (A-3) can be expressed as

$$\begin{aligned} \int _0^1 {\int _0^1 {{\bar{u}_{0,xxx}}} C{C_i}{\mathrm{d}}} \bar{y}{\mathrm{d}}\bar{x} = n_{11}^i\bar{u_1}+n_{12}^i\bar{u_2} \end{aligned}$$
(A-4)

Replace the integrand on the left side of Eq. (A-4), we can obtain

$$\begin{aligned}&{\bar{u}_{0,xxx}} \sim n_{11}^i{\bar{u}_1}+n_{12}^i{\bar{u}_2},\,{\bar{u}_{0,xyy}}\\&\quad \sim n_{21}^i{\bar{u}_1}+n_{22}^i{\bar{u}_2},\,{\bar{u}_{0,x}}\\&\quad \sim n_{31}^i{\bar{u}_1}+n_{32}^i{\bar{u}_2},\,{\bar{u}_{0,y}}\\&\quad \sim n_{41}^i{\bar{u}_1}+n_{42}^i{\bar{u}_2},\,\\&\quad {\bar{v}_{0,yyy}} \sim n_{51}^i{\bar{v}_1}+n_{52}^i{\bar{v}_2},\,{\bar{v}_{0,xxy}}\\&\quad \sim n_{61}^i{\bar{v}_1}+n_{62}^i{\bar{v}_2},\,{\bar{v}_{0,x}}\\&\quad \sim n_{71}^i{\bar{v}_1}+n_{72}^i{\bar{v}_2},\,{\bar{v}_{0,y}}\\&\quad \sim n_{81}^i{\bar{v}_1}+n_{82}^i{\bar{v}_2},\,\\&\quad {\bar{\varphi }_{x,xxx}} \sim n_{91}^i{\bar{\varphi }_{11}}+n_{92}^i{\bar{\varphi }_{12}},\,{\bar{\varphi }_{x,xyy}}\\&\quad \sim n_{101}^i{\bar{\varphi }_{11}}+n_{102}^i{\bar{\varphi }_{12}},\,{\bar{\varphi }_{x,x}}\\&\quad \sim n_{111}^i{\bar{\varphi }_{11}}+n_{112}^i{\bar{\varphi }_{12}},\,{\bar{\varphi }_{x,y}}\\&\quad \sim n_{121}^i{\bar{\varphi }_{11}}+n_{122}^i{\bar{\varphi }_{12}},\\&\quad {\bar{\varphi }_{y,yyy}} \sim n_{131}^i{\bar{\varphi }_{21}}+n_{132}^i{\bar{\varphi }_{22}},\,{\bar{\varphi }_{y,xxy}} \sim n_{141}^i{\bar{\varphi }_{21}}\\ {}&\quad +n_{142}^i{\bar{\varphi }_{22}},\,{\bar{\varphi }_{y,x}}\\&\quad \sim n_{151}^i{\bar{\varphi }_{21}}+n_{152}^i{\bar{\varphi }_{22}},\,{\bar{\varphi }_{y,y}} \sim n_{161}^i{\bar{\varphi }_{21}}+n_{162}^i{\bar{\varphi }_{22}},\\&\quad 1 \sim n_{171}^i,\,{\bar{w}_0} \sim n_{181}^i{\bar{w}_1}+n_{182}^i{\bar{w}_2},\,{\bar{w}_{0,xxxx}}\\&\quad \sim n_{191}^i{\bar{w}_1}+n_{192}^i{\bar{w}_2},\,{\bar{x}^2}{\bar{w}_{0,xx}}\\&\quad \sim n_{201}^i{\bar{w}_1}+n_{202}^i{\bar{w}_2},\,\bar{x}{\bar{w}_{0,xx}} \sim n_{211}^i{\bar{w}_1}+n_{212}^i{\bar{w}_2},\,\\&\quad {\bar{w}_{0,xx}} \sim n_{221}^i{\bar{w}_1}+n_{222}^i{\bar{w}_2},\,\bar{x}{\bar{w}_{0,x}}\\&\quad \sim n_{231}^i{\bar{w}_1}+n_{232}^i{\bar{w}_2},\,{\bar{w}_{0,x}} \sim n_{241}^i{\bar{w}_1}+n_{242}^i{\bar{w}_2},\,\\&\quad {\bar{u}_{0,y}}{\bar{w}_{0,xy}} \sim n_{251}^i{\bar{u}_1}{\bar{w}_1}+n_{252}^i{\bar{u}_1}{\bar{w}_2}\\ {}&\quad + n_{253}^i{\bar{u}_2}{\bar{w}_1}+n_{254}^i{\bar{u}_2}{\bar{w}_2},\,{\bar{v}_{0,x}}{\bar{w}_{0,xy}}\\&\quad \sim n_{261}^i{\bar{v}_1}{\bar{w}_1}+n_{262}^i{\bar{v}_1}{\bar{w}_2} + n_{263}^i{\bar{v}_2}{\bar{w}_1}+n_{264}^i{\bar{v}_2}{\bar{w}_2},\,\\&\quad {\bar{\varphi }_{x,y}}{\bar{w}_{0,xy}} \sim n_{271}^i{\bar{\varphi }_{11}}{\bar{w}_1}+n_{272}^i{\bar{\varphi }_{11}}{\bar{w}_2}\\ {}&\quad + n_{273}^i{\bar{\varphi }_{12}}{\bar{w}_1}+n_{274}^i{\bar{\varphi }_{12}}{\bar{w}_2},\\&\quad \,{\bar{\varphi }_{y,x}}{\bar{w}_{0,xy}} \sim n_{281}^i{\bar{\varphi }_{21}}{\bar{w}_1}+n_{282}^i{\bar{\varphi }_{21}}{\bar{w}_2} \\ {}&\quad + n_{283}^i{\bar{\varphi }_{22}}{\bar{w}_1}+n_{284}^i{\bar{\varphi }_{22}}{\bar{w}_2},\,\\&\quad {\bar{u}_{0,x}}{\bar{w}_{0,xx}} \sim n_{291}^i{\bar{u}_1}{\bar{w}_1}+n_{292}^i{\bar{u}_1}{\bar{w}_2} + n_{293}^i{\bar{u}_2}{\bar{w}_1}\\ {}&\quad +n_{294}^i{\bar{u}_2}{\bar{w}_2},\,{\bar{v}_{0,y}}{\bar{w}_{0,xx}}\\&\quad \sim n_{301}^i{\bar{v}_1}{\bar{w}_1}+n_{302}^i{\bar{v}_1}{\bar{w}_2} + n_{303}^i{\bar{v}_2}{\bar{w}_1}+n_{304}^i{\bar{v}_2}{\bar{w}_2},\,\\&\quad {\bar{\varphi }_{x,x}}{\bar{w}_{0,xx}} \sim n_{311}^i{\bar{\varphi }_{11}}{\bar{w}_1}+n_{312}^i{\bar{\varphi }_{11}}{\bar{w}_2}\\ {}&\quad + n_{313}^i{\bar{\varphi }_{12}}{\bar{w}_1}+n_{314}^i{\bar{\varphi }_{12}}{\bar{w}_2},\\&\quad \,{\bar{\varphi }_{y,y}}{\bar{w}_{0,xx}} \sim n_{321}^i{\bar{\varphi }_{21}}{\bar{w}_1}+n_{322}^i{\bar{\varphi }_{21}}{\bar{w}_2} \\ {}&\quad + n_{323}^i{\bar{\varphi }_{22}}{\bar{w}_1}+n_{324}^i{\bar{\varphi }_{22}}{\bar{w}_2},\,\\&\quad {\bar{u}_{0,xx}}{\bar{w}_{0,x}} \sim n_{331}^i{\bar{u}_1}{\bar{w}_1}+n_{332}^i{\bar{u}_1}{\bar{w}_2} \\ {}&\quad + n_{333}^i{\bar{u}_2}{\bar{w}_1}+n_{334}^i{\bar{u}_2}{\bar{w}_2},\,{\bar{u}_{0,yy}}{\bar{w}_{0,x}}\\&\quad \sim n_{341}^i{\bar{u}_1}{\bar{w}_1}+n_{342}^i{\bar{u}_1}{\bar{w}_2} + n_{343}^i{\bar{u}_2}{\bar{w}_1}+n_{344}^i{\bar{u}_2}{\bar{w}_2},\,\\&\quad {\bar{v}_{0,xy}}{\bar{w}_{0,x}} \sim n_{351}^i{\bar{v}_1}{\bar{w}_1}+n_{352}^i{\bar{v}_1}{\bar{w}_2}\\ {}&\quad + n_{353}^i{\bar{v}_2}{\bar{w}_1}+n_{354}^i{\bar{v}_2}{\bar{w}_2},\,{\bar{\varphi }_{x,xx}}{\bar{w}_{0,x}}\\&\quad \sim n_{361}^i{\bar{\varphi }_{11}}{\bar{w}_1}+n_{362}^i{\bar{\varphi }_{11}}{\bar{w}_2} + n_{363}^i{\bar{\varphi }_{12}}{\bar{w}_1}\\ {}&\quad +n_{364}^i{\bar{\varphi }_{12}}{\bar{w}_2},\,\\&\quad {\bar{\varphi }_{x,yy}}{\bar{w}_{0,x}} \sim n_{371}^i{\bar{\varphi }_{11}}{\bar{w}_1}+n_{372}^i{\bar{\varphi }_{11}}{\bar{w}_2} \\ {}&\quad + n_{373}^i{\bar{\varphi }_{12}}{\bar{w}_1}+n_{374}^i{\bar{\varphi }_{12}}{\bar{w}_2},\\&\quad \,{\bar{\varphi }_{y,xy}}{\bar{w}_{0,x}} \sim n_{381}^i{\bar{\varphi }_{21}}{\bar{w}_1}+n_{382}^i{\bar{\varphi }_{21}}{\bar{w}_2} \\ {}&\quad + n_{383}^i{\bar{\varphi }_{22}}{\bar{w}_1}+n_{384}^i{\bar{\varphi }_{22}}{\bar{w}_2},\,\\&\quad {\bar{u}_{0,xy}}{\bar{w}_{0,y}} \sim n_{391}^i{\bar{u}_1}{\bar{w}_1}+n_{392}^i{\bar{u}_1}{\bar{w}_2}\\ {}&\quad + n_{393}^i{\bar{u}_2}{\bar{w}_1}+n_{394}^i{\bar{u}_2}{\bar{w}_2},\,{\bar{v}_{0,yy}}{\bar{w}_{0,y}}\\&\quad \sim n_{401}^i{\bar{v}_1}{\bar{w}_1}+n_{402}^i{\bar{v}_1}{\bar{w}_2} + n_{403}^i{\bar{v}_2}{\bar{w}_1}+n_{404}^i{\bar{v}_2}{\bar{w}_2},\,\\&\quad {\bar{v}_{0,xx}}{\bar{w}_{0,y}} \sim n_{411}^i{\bar{v}_1}{\bar{w}_1}+n_{412}^i{\bar{v}_1}{\bar{w}_2} + n_{413}^i{\bar{v}_2}{\bar{w}_1}\\ {}&\quad +n_{424}^i{\bar{v}_2}{\bar{w}_2},\,{\bar{\varphi }_{x,xy}}{\bar{w}_{0,y}}\\&\quad \sim n_{421}^i{\bar{\varphi }_{11}}{\bar{w}_1}+n_{422}^i{\bar{\varphi }_{11}}{\bar{w}_2} + n_{423}^i{\bar{\varphi }_{12}}{\bar{w}_1}\\ {}&\quad +n_{424}^i{\bar{\varphi }_{12}}{\bar{w}_2},\,\\&\quad {\bar{\varphi }_{y,xx}}{\bar{w}_{0,y}} \sim n_{431}^i{\bar{\varphi }_{21}}{\bar{w}_1}+n_{432}^i{\bar{\varphi }_{21}}{\bar{w}_2} + n_{433}^i{\bar{\varphi }_{22}}{\bar{w}_1}\\ {}&\quad +n_{434}^i{\bar{\varphi }_{22}}{\bar{w}_2},\\&\quad \,{\bar{\varphi }_{y,yy}}{\bar{w}_{0,y}} \sim n_{441}^i{\bar{\varphi }_{21}}{\bar{w}_1}+n_{442}^i{\bar{\varphi }_{21}}{\bar{w}_2} \\ {}&\quad + n_{443}^i{\bar{\varphi }_{22}}{\bar{w}_1}+n_{444}^i{\bar{\varphi }_{22}}{\bar{w}_2},\,\\&\quad \bar{w}_{0,xx}^2 \sim n_{451}^i\bar{w}_1^2+n_{452}^i{\bar{w}_1}{\bar{w}_2} + n_{453}^i\bar{w}_2^2,\,\bar{w}_{0,xy}^2\\&\quad \sim n_{461}^i\bar{w}_1^2+n_{462}^i{\bar{w}_1}{\bar{w}_2} + n_{463}^i\bar{w}_2^2,\\&\quad \,{\bar{w}_{0,x}}{\bar{w}_{0,xxx}} \sim n_{471}^i\bar{w}_1^2+n_{472}^i{\bar{w}_1}{\bar{w}_2}\\ {}&\quad + n_{473}^i\bar{w}_2^2,\,{\bar{w}_{0,y}}{\bar{w}_{0,xxy}}\\&\quad \sim n_{481}^i\bar{w}_1^2+n_{482}^i{\bar{w}_1}{\bar{w}_2} + n_{483}^i\bar{w}_2^2,\\&\quad \,\bar{w}_{0,x}^2{\bar{w}_{0,xx}} \sim n_{491}^i\bar{w}_1^3+n_{492}^i\bar{w}_1^2{\bar{w}_2} \\ {}&\quad + n_{493}^i{\bar{w}_1}\bar{w}_2^2 + n_{494}^i\bar{w}_2^3,\,\bar{w}_{0,y}^2{\bar{w}_{0,xx}}\\&\quad \sim n_{501}^i\bar{w}_1^3+n_{502}^i\bar{w}_1^2{\bar{w}_2} + n_{503}^i{\bar{w}_1}\bar{w}_2^2 + n_{504}^i\bar{w}_2^3,\\&\quad \,{\bar{w}_{0,x}}{\bar{w}_{0,y}}{\bar{w}_{0,xx}} \sim n_{511}^i\bar{w}_1^3+n_{512}^i\bar{w}_1^2{\bar{w}_2} \\ {}&\quad + n_{513}^i{\bar{w}_1}\bar{w}_2^2 + n_{514}^i\bar{w}_2^3,\,{\bar{w}_{0,y}}\\&\quad \sim n_{521}^i{\bar{w}_1}+n_{522}^i{\bar{w}_2} \end{aligned}$$

The coefficients in Eq. (19a) are given as follows

$$\begin{aligned} {\alpha _0}&= {c_1}{k_{101}}n_{162}^1 + {c_1}{k_{91}}n_{161}^1 + {c_4}{k_{71}}n_{111}^1 + {c_4}{k_{81}}n_{112}^1\\&\quad + {c_{68}}{k_{11}}n_{31}^1 + {c_{68}}{k_{21}}n_{32}^1 + {c_{69}}{k_{31}}n_{81}^1\\&\quad + {c_{69}}{k_{41}}n_{82}^1 - {c_{42}}n_{221}^1 + {c_{52}}n_{181}^1\\ {\alpha _1}&= ({c_2}n_{162}^1 + {c_7}n_{152}^1 + {c_{50}}n_{142}^1 + {c_{51}}n_{132}^1){k_{101}} + ({c_{22}}n_{323}^1\\&\quad + {c_{55}}n_{443}^1 + {c_{56}}n_{383}^1 + {c_{58}}n_{433}^1){k_{106}}\\&\quad + ( - {c_{23}}n_{291}^1 + {c_{53}}n_{391}^1 - {c_{65}}n_{341}^1 - {c_{67}}n_{331}^1){k_{16}}\\&\quad + ( - {c_{23}}n_{293}^1 + {c_{53}}n_{393}^1 - {c_{65}}n_{343}^1 - {c_{67}}n_{333}^1){k_{26}}\\&\quad + ( - {c_{24}}n_{301}^1 - {c_{40}}n_{411}^1 + {c_{54}}n_{351}^1 - {c_{66}}n_{401}^1){k_{36}} \\&\quad + ( - {c_{24}}n_{303}^1 - {c_{40}}n_{413}^1 + {c_{54}}n_{353}^1 - {c_{66}}n_{403}^1){k_{46}}\\&\quad + ({c_3}n_{111}^1 + {c_5}n_{91}^1 + {c_6}n_{121}^1 + {c_{49}}n_{10}^1){k_{71}}\\&\quad + ({c_{21}}n_{311}^1 + {c_{57}}n_{371}^1 + {c_{59}}n_{421}^1 + {c_{60}}n_{361}^1){k_{76}}\\&\quad + ({c_3}n_{112}^1 + {c_5}n_{92}^1 + {c_6}n_{122}^1 + {c_{49}}n_{102}^1){k_{81}}\\&\quad + ({c_{21}}n_{313}^1 + {c_{57}}n_{373}^1 + {c_{59}}n_{423}^1 + {c_{60}}n_{363}^1){k_{86}}\\&\quad + ({c_2}n_{161}^1 + {c_7}n_{151}^1 + {c_{50}}n_{141}^1 + {c_{51}}n_{131}^1){k_{91}}\\&\quad + ({c_{22}}n_{321}^1 + {c_{55}}n_{441}^1 + {c_{56}}n_{381}^1 + {c_{58}}n_{431}^1){k_{96}}\\&\quad + ( - {c_8}n_{41}^1 + {c_{11}}n_{21}^1 - {c_{64}}n_{11}^1){k_{11}} + ( - {c_8}n_{42}^1\\&\quad + {c_{11}}n_{22}^1 - {c_{64}}n_{12}^1){k_{21}} + ( - {c_9}n_{71}^1 + {c_{47}}n_{61}^1 - {c_{63}}n_{51}^1){k_{31}}\\&\quad + ( - {c_9}n_{72}^1 + {c_{47}}n_{62}^1 - {c_{63}}n_{52}^1){k_{41}} + {c_{27}}n_{221}^1 + {c_{61}}n_{191}^1\\ {\alpha _2}&= {c_{43}}{k_{71}}n_{121}^1 + {c_{43}}{k_{81}}n_{122}^1 + {c_{44}}{k_{101}}n_{152}^1 + {c_{44}}{k_{91}}n_{151}^1\\&\quad + {c_{45}}{k_{11}}n_{41}^1 + {c_{45}}{k_{21}}n_{42}^1 - {c_{46}}{k_{31}}n_{71}^1 - {c_{46}}{k_{41}}n_{72}^1\\ {\alpha _3}&= {c_{12}}{k_{101}}n_{162}^1 + {c_{12}}{k_{91}}n_{161}^1 + {c_{16}}{k_{71}}n_{111}^1\\&\quad + {c_{16}}{k_{81}}n_{112}^1 - {c_{18}}{k_{31}}n_{81}^1 - {c_{18}}{k_{41}}n_{82}^1 \\ {}&\quad - {c_{19}}{k_{11}}n_{31}^1 - {c_{19}}{k_{21}}n_{32}^1 \\&\quad + {c_{13}}n_{241}^1+ {c_{130}}n_{231}^1 + {c_{14}}n_{221}^1 + {c_{140}}n_{231}^1 + {c_{141}}n_{201}^1\\ {\alpha _4}&= {c_{35}}{k_{31}}n_{71}^1 + {c_{35}}{k_{41}}n_{72}^1\\&\quad + {c_{36}}{k_{11}}n_{41}^1 + {c_{36}}{k_{21}}n_{42}^1\\&\quad + {c_{37}}{k_{71}}n_{121}^1 + {c_{37}}{k_{81}}n_{122}^1\\&\quad + {c_{38}}{k_{101}}n_{152}^1 + {c_{38}}{k_{91}}n_{151}^1 \end{aligned}$$
$$\begin{aligned} {\alpha _5}&= ({c_{22}}n_{323}^1 + {c_{55}}n_{443}^1 + {c_{56}}n_{383}^1 + {c_{58}}n_{433}^1){k_{101}}\\&\quad + ({c_2}n_{162}^1 + {c_7}n_{152}^1 + {c_{50}}n_{142}^1 + {c_{51}}n_{132}^1){k_{104}}\\&\quad + ( - {c_{23}}n_{291}^1 + {c_{53}}n_{391}^1 - {c_{65}}n_{341}^1 - {c_{67}}n_{331}^1){k_{11}}\\&\quad + ( - {c_{23}}n_{293}^1 + {c_{53}}n_{393}^1 - {c_{65}}n_{343}^1 - {c_{67}}n_{333}^1){k_{21}}\\&\quad + ( - {c_{24}}n_{301}^1 - {c_{40}}n_{411}^1 + {c_{54}}n_{351}^1 - {c_{66}}n_{401}^1){k_{31}}\\&\quad + ( - {c_{24}}n_{303}^1 - {c_{40}}n_{413}^1 + {c_{54}}n_{353}^1 - {c_{66}}n_{403}^1){k_{41}}\\&\quad + ({c_{21}}n_{311}^1 + {c_{57}}n_{371}^1 + {c_{59}}n_{421}^1 + {c_{60}}n_{361}^1){k_{71}}\\&\quad + ({c_3}n_{111}^1 + {c_5}n_{91}^1 + {c_6}n_{121}^1 + {c_{49}}n_{10}^1){k_{74}}\\&\quad + ({c_{21}}n_{313}^1 + {c_{57}}n_{373}^1 + {c_{59}}n_{423}^1 + {c_{60}}n_{363}^1){k_{81}}\\&\quad + ({c_3}n_{112}^1 + {c_5}n_{92}^1 + {c_6}n_{122}^1 + {c_{49}}n_{102}^1){k_{84}}\\&\quad + ({c_{22}}n_{321}^1 + {c_{55}}n_{441}^1 + {c_{56}}n_{381}^1 + {c_{58}}n_{431}^1){k_{91}}\\&\quad + ({c_2}n_{161}^1 + {c_7}n_{151}^1 + {c_{50}}n_{141}^1 + {c_{51}}n_{131}^1){k_{94}}\\&\quad + ( - {c_8}n_{41}^1 + {c_{11}}n_{21}^1 - {c_{64}}n_{11}^1){k_{14}}\\&\quad + ( - {c_8}n_{42}^1 + {c_{11}}n_{22}^1 - {c_{64}}n_{12}^1){k_{24}}\\&\quad + ( - {c_9}n_{71}^1 + {c_{47}}n_{61}^1 - {c_{63}}n_{51}^1){k_{34}}\\&\quad + ( - {c_9}n_{72}^1 + {c_{47}}n_{62}^1 - {c_{63}}n_{52}^1){k_{44}} + {c_{39}}n_{461}^1\\ {\alpha _6}&= {c_{43}}{k_{74}}n_{121}^1 + {c_{43}}{k_{84}}n_{122}^1 + {c_{44}}{k_{104}}n_{152}^1\\&\quad + {c_{44}}{k_{94}}n_{151}^1 + {c_{45}}{k_{14}}n_{41}^1 + {c_{45}}{k_{24}}n_{42}^1 \\ {}&\quad - {c_{46}}{k_{34}}n_{71}^1 - {c_{46}}{k_{44}}n_{72}^1\\ {\alpha _7}&= {c_{12}}{k_{104}}n_{162}^1 + {c_{12}}{k_{94}}n_{161}^1 + {c_{16}}{k_{74}}n_{111}^1 + {c_{16}}{k_{84}}n_{112}^1\\&\quad - {c_{18}}{k_{34}}n_{81}^1 - {c_{18}}{k_{44}}n_{82}^1 - {c_{19}}{k_{14}}n_{31}^1 - {c_{19}}{k_{24}}n_{32}^1\\ {\alpha _8}&= ( - {c_9}n_{71}^1 + {c_{47}}n_{61}^1 - {c_{63}}n_{51}^1){k_{33}}\\&\quad + ( - {c_9}n_{72}^1 + {c_{47}}n_{62}^1 - {c_{63}}n_{52}^1){k_{43}}\\&\quad + ( - {k_{11}}n_{342}^1 - {k_{12}}n_{341}^1 - {k_{21}}n_{344}^1 - {k_{22}}n_{343}^1){c_{65}}\\&\quad + ({c_2}n_{161}^1 + {c_7}n_{151}^1 + {c_{50}}n_{141}^1 + {c_{51}}n_{131}^1){k_{93}}\\&\quad + ( - {c_8}n_{41}^1 + {c_{11}}n_{21}^1 - {c_{64}}n_{11}^1){k_{13}}\\&\quad + ( - {c_8}n_{42}^1 + {c_{11}}n_{22}^1 - {c_{64}}n_{12}^1){k_{23}}\\&\quad + ({k_{71}}n_{362}^1 + {k_{72}}n_{361}^1 + {k_{81}}n_{364}^1 + {k_{82}}n_{363}^1){c_{60}}\\&\quad + ( - {k_{31}}n_{402}^1 - {k_{32}}n_{401}^1 - {k_{41}}n_{404}^1 - {k_{42}}n_{403}^1){c_{66}}\\&\quad + ({c_3}n_{111}^1 + {c_5}n_{91}^1 + {c_6}n_{121}^1 + {c_{49}}n_{10}^1){k_{73}}\\&\quad + ({c_3}n_{112}^1 + {c_5}n_{92}^1 + {c_6}n_{122}^1 + {c_{49}}n_{102}^1){k_{83}}\\&\quad + ({c_{22}}n_{324}^1 + {c_{55}}n_{444}^1 + {c_{56}}n_{384}^1 + {c_{58}}n_{434}^1){k_{101}}\\&\quad + ({c_{22}}n_{323}^1 + {c_{55}}n_{443}^1 + {c_{56}}n_{383}^1 + {c_{58}}n_{433}^1){k_{102}}\\&\quad + ( - {k_{11}}n_{332}^1 - {k_{12}}n_{331}^1 - {k_{21}}n_{334}^1 - {k_{22}}n_{333}^1){c_{67}}\\&\quad + ({c_2}n_{162}^1 + {c_7}n_{152}^1 + {c_{50}}n_{142}^1 + {c_{51}}n_{132}^1){k_{103}}\\&\quad + ({k_{71}}n_{312}^1 + {k_{72}}n_{311}^1 + {k_{81}}n_{314}^1 + {k_{82}}n_{313}^1){c_{21}}\\&\quad + ({k_{91}}n_{322}^1 + {k_{92}}n_{321}^1){c_{22}}\\&\quad + ( - {k_{11}}n_{292}^1 - {k_{12}}n_{291}^1 - {k_{21}}n_{294}^1 - {k_{22}}n_{293}^1){c_{23}}\\&\quad + ( - {k_{31}}n_{302}^1 - {k_{32}}n_{301}^1 - {k_{41}}n_{304}^1 - {k_{42}}n_{303}^1){c_{24}}\\&\quad + ( - {k_{31}}n_{412}^1 - {k_{32}}n_{411}^1 - {k_{41}}n_{414}^1\\&\quad - {k_{42}}n_{413}^1){c_{40}} + ({k_{11}}n_{392}^1 + {k_{12}}n_{391}^1 + {k_{21}}n_{394}^1 \\ {}&\quad + {k_{22}}n_{393}^1){c_{53}}\\&\quad + ({k_{31}}n_{352}^1 + {k_{32}}n_{351}^1 + {k_{41}}n_{354}^1 + {k_{42}}n_{353}^1){c_{54}}\\&\quad + ({k_{91}}n_{442}^1 + {k_{92}}n_{441}^1){c_{55}} + ({k_{91}}n_{382}^1 + {k_{92}}n_{381}^1){c_{56}}\\&\quad + ({k_{71}}n_{372}^1 + {k_{72}}n_{371}^1 + {k_{81}}n_{374}^1 + {k_{82}}n_{373}^1){c_{57}}\\&\quad + ({k_{91}}n_{432}^1 + {k_{92}}n_{431}^1){c_{58}}\\&\quad + ({k_{71}}n_{422}^1 + {k_{72}}n_{421}^1 + {k_{81}}n_{424}^1 + {k_{82}}n_{423}^1){c_{59}}\\&\quad + {c_{39}}n_{462}^1\\ {\alpha _9}&= {c_{43}}{k_{73}}n_{121}^1 + {c_{43}}{k_{83}}n_{122}^1 + {c_{44}}{k_{103}}n_{152}^1 + {c_{44}}{k_{93}}n_{151}^1 \\&\quad + {c_{45}}{k_{13}}n_{41}^1+ {c_{45}}{k_{23}}n_{42}^1 - {c_{46}}{k_{33}}n_{71}^1 - {c_{46}}{k_{43}}n_{72}^1\\ {\alpha _{10}}&= {c_{12}}{k_{103}}n_{162}^1 + {c_{12}}{k_{93}}n_{161}^1 + {c_{16}}{k_{73}}n_{111}^1 + {c_{16}}{k_{83}}n_{112}^1 \\&\quad - {c_{18}}{k_{33}}n_{81}^1- {c_{18}}{k_{43}}n_{82}^1 - {c_{19}}{k_{13}}n_{31}^1 - {c_{19}}{k_{23}}n_{32}^1\\ {\alpha _{11}}&= ({c_{22}}n_{324}^1 + {c_{55}}n_{444}^1 + {c_{56}}n_{384}^1 + {c_{58}}n_{434}^1){k_{103}} + ({c_{22}}n_{323}^1\\&\quad + {c_{55}}n_{443}^1 + {c_{56}}n_{383}^1 + {c_{58}}n_{433}^1){k_{105}}\\&\quad + ({k_{73}}n_{312}^1 + {k_{75}}n_{311}^1 + {k_{83}}n_{314}^1 + {k_{85}}n_{313}^1){c_{21}}\\&\quad + ({k_{93}}n_{322}^1 + {k_{95}}n_{321}^1){c_{22}}\\&\quad + ( - {k_{13}}n_{292}^1 - {k_{15}}n_{291}^1 - {k_{23}}n_{294}^1 - {k_{25}}n_{293}^1){c_{23}} \\&\quad + ( - {k_{33}}n_{302}^1- {k_{35}}n_{301}^1 - {k_{43}}n_{304}^1 - {k_{45}}n_{303}^1){c_{24}}\\&\quad + ( - {k_{33}}n_{412}^1 - {k_{35}}n_{411}^1 - {k_{43}}n_{414}^1\\&\quad - {k_{45}}n_{413}^1){c_{40}} + ({k_{13}}n_{392}^1 + {k_{15}}n_{391}^1 + {k_{23}}n_{394}^1 \\&\quad + {k_{25}}n_{393}^1){c_{53}}+ ({k_{33}}n_{352}^1 + {k_{35}}n_{351}^1 + {k_{43}}n_{354}^1\\&\quad + {k_{45}}n_{353}^1){c_{54}} + ({k_{93}}n_{442}^1 + {k_{95}}n_{441}^1){c_{55}}\\&\quad + ({k_{93}}n_{382}^1 + {k_{95}}n_{381}^1){c_{56}}\\&\quad + ({k_{73}}n_{372}^1 + {k_{75}}n_{371}^1 + {k_{83}}n_{374}^1 + {k_{85}}n_{373}^1){c_{57}}\\&\quad + ({k_{93}}n_{432}^1 + {k_{95}}n_{431}^1){c_{58}}\\&\quad + ({k_{73}}n_{422}^1 + {k_{75}}n_{421}^1 + {k_{83}}n_{424}^1 + {k_{85}}n_{423}^1){c_{59}}\\&\quad + ({k_{73}}n_{362}^1 + {k_{75}}n_{361}^1 + {k_{83}}n_{364}^1 + {k_{85}}n_{363}^1){c_{60}}\\&\quad + ( - {k_{13}}n_{342}^1 - {k_{15}}n_{341}^1 - {k_{23}}n_{344}^1 - {k_{25}}n_{343}^1){c_{65}}\\&\quad + ( - {k_{33}}n_{402}^1 - {k_{35}}n_{401}^1 - {k_{43}}n_{404}^1 - {k_{45}}n_{403}^1){c_{66}}\\&\quad + ( - {k_{13}}n_{332}^1 - {k_{15}}n_{331}^1 - {k_{23}}n_{334}^1 - {k_{25}}n_{333}^1){c_{67}}\\&\quad + {c_{10}}n_{513}^1 - {c_{25}}n_{493}^1 + {c_{26}}n_{503}^1\\ {\alpha _{12}}&= ({c_{22}}n_{323}^1 + {c_{55}}n_{443}^1 + {c_{56}}n_{383}^1 + {c_{58}}n_{433}^1){k_{103}} + ({c_{22}}n_{324}^1\\&\quad + {c_{55}}n_{444}^1 + {c_{56}}n_{384}^1 + {c_{58}}n_{434}^1){k_{104}}\\&\quad + ({k_{73}}n_{311}^1 + {k_{74}}n_{312}^1 + {k_{83}}n_{313}^1 + {k_{84}}n_{314}^1){c_{21}}\\&\quad + ({k_{93}}n_{321}^1 + {k_{94}}n_{322}^1){c_{22}}\\&\quad + {( - {k_{13}}n_{291}^1 - {k_{14}}n_{292}^1 - {k_{23}}n_{293}^1 - {k_{24}}n_{294}^1)_{c23}}\\&\quad + ( - {k_{33}}n_{301}^1 - {k_{34}}n_{302}^1 - {k_{43}}n_{303}^1 - {k_{44}}n_{304}^1){c_{24}}\\&\quad + ( - {k_{33}}n_{411}^1 - {k_{34}}n_{412}^1 - {k_{43}}n_{413}^1 - {k_{44}}n_{414}^1){c_{40}}\\&\quad + ({k_{13}}n_{391}^1 + {k_{14}}n_{392}^1 + {k_{23}}n_{393}^1 + {k_{_{24}}}n_{394}^1){c_{53}}\\&\quad + ({k_{33}}n_{351}^1 + {k_{34}}n_{352}^1 + {k_{43}}n_{353}^1 + {k_{44}}n_{354}^1){c_{54}}\\&\quad + ({k_{93}}n_{441}^1 + {k_{94}}n_{442}^1){c_{55}}\\&\quad + ({k_{93}}n_{381}^1 + {k_{94}}n_{382}^1){c_{56}} + ({k_{73}}n_{371}^1 + {k_{74}}n_{372}^1\\&\quad + {k_{83}}n_{373}^1 + {k_{84}}n_{374}^1){c_{57}}\\&\quad + ({k_{93}}n_{431}^1 + {k_{94}}n_{432}^1){c_{58}} + ({k_{73}}n_{421}^1 + {k_{74}}n_{422}^1\\&\quad + {k_{83}}n_{423}^1 + {k_{84}}n_{424}^1){c_{59}}\\&\quad + ({k_{73}}n_{361}^1 + {k_{74}}n_{362}^1 + {k_{83}}n_{363}^1 + {k_{84}}n_{364}^1){c_{60}}\\&\quad + ( - {k_{13}}n_{341}^1 - {k_{14}}n_{342}^1 - {k_{23}}n_{343}^1 - {k_{24}}n_{344}^1){c_{65}}\\&\quad + ( - {k_{33}}n_{401}^1 - {k_{34}}n_{402}^1 - {k_{43}}n_{403}^1 - {k_{44}}n_{404}^1){c_{66}}\\&\quad + ( - {k_{13}}n_{331}^1 - {k_{14}}n_{332}^1 - {k_{23}}n_{333}^1 - {k_{24}}n_{334}^1){c_{67}} \\&\quad + {c_{10}}n_{512}^1 - {c_{25}}n_{492}^1 + {c_{26}}n_{502}^1\\ \end{aligned}$$
$$\begin{aligned} {\alpha _{13}}&= ({c_{22}}n_{323}^1 + {c_{55}}n_{443}^1 + {c_{56}}n_{383}^1 + {c_{58}}n_{433}^1){k_{104}}\\&\quad + ( - {c_{23}}n_{291}^1 + {c_{53}}n_{391}^1 - {c_{65}}n_{341}^1 - {c_{67}}n_{331}^1){k_{14}}\\&\quad + ( - {c_{23}}n_{293}^1 + {c_{53}}n_{393}^1 - {c_{65}}n_{343}^1 - {c_{67}}n_{333}^1){k_{24}}\\&\quad + ( - {c_{24}}n_{301}^1 - {c_{40}}n_{411}^1 + {c_{54}}n_{351}^1 - {c_{66}}n_{401}^1){k_{34}}\\&\quad + ( - {c_{24}}n_{303}^1 - {c_{40}}n_{413}^1 + {c_{54}}n_{353}^1 - {c_{66}}n_{403}^1){k_{44}}\\&\quad + ({c_{21}}n_{311}^1 + {c_{57}}n_{371}^1 + {c_{59}}n_{421}^1 + {c_{60}}n_{361}^1){k_{74}}\\&\quad + ({c_{21}}n_{313}^1 + {c_{57}}n_{373}^1 + {c_{59}}n_{423}^1 + {c_{60}}n_{363}^1){k_{84}}\\&\quad + ({c_{22}}n_{321}^1 + {c_{55}}n_{441}^1 + {c_{56}}n_{381}^1 + {c_{58}}n_{431}^1){k_{94}} \\&\quad + {c_{10}}n_{511}^1 - {c_{25}}n_{491}^1 + {c_{26}}n_{501}^1\\ {\alpha _{14}}&= ({c_{22}}n_{324}^1 + {c_{55}}n_{444}^1 + {c_{56}}n_{384}^1 + {c_{58}}n_{434)}^1{k_{102}}\\&\quad + ({c_2}n_{162}^1 + {c_7}n_{152}^1 + {c_{50}}n_{142}^1 + {c_{51}}n_{132}^1){k_{105}}\\&\quad + ( - {c_{23}}n_{292}^1 + {c_{53}}n_{392}^1 - {c_{65}}n_{342}^1 - {c_{67}}n_{332}^1){k_{12}}\\&\quad + ( - {c_{23}}n_{294}^1 + {c_{53}}n_{394}^1 - {c_{65}}n_{344}^1 - {c_{67}}n_{334}^1){k_{22}}\\&\quad + ( - {c_{24}}n_{302}^1 - {c_{40}}n_{412}^1 + {c_{54}}n_{352}^1 - {c_{66}}n_{402}^1){k_{32}}\\&\quad + ( - {c_{24}}n_{304}^1 - {c_{40}}n_{414}^1 + {c_{54}}n_{354}^1 - {c_{66}}n_{404}^1){k_{42}}\\&\quad + ({c_{21}}n_{312}^1 + {c_{57}}n_{372}^1 + {c_{59}}n_{422}^1 + {c_{60}}n_{362}^1){k_{72}}\\&\quad + ({c_3}n_{111}^1 + {c_5}n_{91}^1 + {c_6}n_{121}^1 + {c_{49}}n_{10}^1){k_{75}}\\&\quad + ({c_{21}}n_{314}^1 + {c_{57}}n_{374}^1 + {c_{59}}n_{424}^1 + {c_{60}}n_{364}^1){k_{82}}\\&\quad + ({c_3}n_{112}^1 + {c_5}n_{92}^1 + {c_6}n_{122}^1 + {c_{49}}n_{102}^1){k_{85}}\\&\quad + ({c_{22}}n_{322}^1 + {c_{55}}n_{442}^1 + {c_{56}}n_{382}^1 + {c_{58}}n_{432}^1){k_{92}}\\&\quad + ({c_2}n_{161}^1 + {c_7}n_{151}^1 + {c_{50}}n_{141}^1 + {c_{51}}n_{131}^1){k_{95}}\\&\quad + ( - {c_8}n_{41}^1 + {c_{11}}n_{21}^1 - {c_{64}}n_{11}^1){k_{15}}\\&\quad + ( - {c_8}n_{42}^1 + {c_{11}}n_{22}^1 - {c_{64}}n_{12}^1){k_{25}}\\&\quad + ( - {c_9}n_{71}^1 + {c_{47}}n_{61}^1 - {c_{63}}n_{51}^1){k_{35}}\\&\quad + ( - {c_9}n_{72}^1 + {c_{47}}n_{62}^1 - {c_{63}}n_{52}^1){k_{45}} + {c_{39}}n_{463}^1\\ {\alpha _{15}}&= {c_{43}}{k_{75}}n_{121}^1 + {c_{43}}{k_{85}}n_{122}^1 + {c_{44}}{k_{105}}n_{152}^1\\&\quad + {c_{44}}{k_{95}}n_{151}^1 + {c_{45}}{k_{15}}n_{41}^1 + {c_{45}}{k_{25}}n_{42}^1 - {c_{46}}{k_{35}}n_{71}^1\\ {}&\quad - {c_{46}}{k_{45}}n_{72}^1\\ {\alpha _{16}}&= {c_{12}}{k_{105}}n_{162}^1 + {c_{12}}{k_{95}}n_{161}^1 + {c_{16}}{k_{75}}n_{111}^1 + {c_{16}}{k_{85}}n_{112}^1\\&\quad - {c_{18}}{k_{35}}n_{81}^1 - {c_{18}}{k_{45}}n_{82}^1 - {c_{19}}{k_{15}}n_{31}^1 - {c_{19}}{k_{25}}n_{32}^1\\ {\alpha _{17}}&= ({c_{22}}n_{324}^1 + {c_{55}}n_{444}^1 + {c_{56}}n_{384}^1 + {c_{58}}n_{434}^1){k_{105}}\\&\quad + ( - {c_{23}}n_{292}^1 + {c_{53}}n_{392}^1 - {c_{65}}n_{342}^1 - {c_{67}}n_{332}^1){k_{15}}\\&\quad + ( - {c_{23}}n_{294}^1 + {c_{53}}n_{394}^1 - {c_{65}}n_{344}^1 - {c_{67}}n_{334}^1){k_{25}}\\&\quad + ( - {c_{24}}n_{302}^1 - {c_{40}}n_{412}^1 + {c_{54}}n_{352}^1 - {c_{66}}n_{402}^1){k_{35}}\\ {}&\quad + {c_{10}}n_{514}^1\\&\quad + ( - {c_{24}}n_{304}^1 - {c_{40}}n_{414}^1 + {c_{54}}n_{354}^1 - {c_{66}}n_{404}^1){k_{45}}\\&\quad + ({c_{21}}n_{312}^1 + {c_{57}}n_{372}^1 + {c_{59}}n_{422}^1 + {c_{60}}n_{362}^1){k_{75}}- {c_{25}}n_{494}^1\\&\quad + ({c_{21}}n_{314}^1 + {c_{57}}n_{374}^1 + {c_{59}}n_{424}^1 + {c_{60}}n_{364}^1){k_{85}}\\&\quad + ({c_{22}}n_{322}^1 + {c_{55}}n_{442}^1 + {c_{56}}n_{382}^1 + {c_{58}}n_{432}^1){k_{95}}+ {c_{26}}n_{504}^1 \\ {\alpha _{18}}&= ({c_2}n_{162}^1 + {c_7}n_{152}^1 + {c_{50}}n_{142}^1 + {c_{51}}n_{132}^1){k_{102}}\\&\quad + ({c_{22}}n_{324}^1 + {c_{55}}n_{444}^1 + {c_{56}}n_{384}^1 + {c_{58}}n_{434}^1){k_{106}}\\&\quad + ( - {c_{23}}n_{292}^1 + {c_{53}}n_{392}^1 - {c_{65}}n_{342}^1 - {c_{67}}n_{332}^1){k_{16}}\\&\quad + ( - {c_{23}}n_{294}^1 + {c_{53}}n_{394}^1 - {c_{65}}n_{344}^1 - {c_{67}}n_{334}^1){k_{26}}\\&\quad + ( - {c_{24}}n_{302}^1 - {c_{40}}n_{412}^1 + {c_{54}}n_{352}^1 - {c_{66}}n_{402}^1){k_{36}}\\&\quad + ( - {c_{24}}n_{304}^1 - {c_{40}}n_{414}^1 + {c_{54}}n_{354}^1 - {c_{66}}n_{404}^1){k_{46}}\\&\quad + ({c_3}n_{111}^1 + {c_5}n_{91}^1 + {c_6}n_{121}^1 + {c_{49}}n_{10}^1){k_{72}}\\&\quad + ({c_{21}}n_{312}^1 + {c_{57}}n_{372}^1 + {c_{59}}n_{422}^1 + {c_{60}}n_{362}^1){k_{76}}\\&\quad + ({c_3}n_{112}^1 + {c_5}n_{92}^1 + {c_6}n_{122}^1 + {c_{49}}n_{102}^1){k_{82}}\\&\quad + ({c_{21}}n_{314}^1 + {c_{57}}n_{374}^1 + {c_{59}}n_{424}^1 + {c_{60}}n_{364}^1){k_{86}}\\&\quad + ({c_2}n_{161}^1 + {c_7}n_{151}^1 + {c_{50}}n_{141}^1 + {c_{51}}n_{131}^1){k_{92}}\\&\quad + ({c_{22}}n_{322}^1 + {c_{55}}n_{442}^1 + {c_{56}}n_{382}^1 + {c_{58}}n_{432}^1){k_{96}} \\&\quad + ( - {c_8}n_{41}^1 + {c_{11}}n_{21}^1 - {c_{64}}n_{11}^1){k_{12}}\\&\quad + ( - {c_8}n_{42}^1 + {c_{11}}n_{22}^1 - {c_{64}}n_{12}^1){k_{22}}\\&\quad + ( - {c_9}n_{71}^1 + {c_{47}}n_{61}^1 - {c_{63}}n_{51}^1){k_{32}} \\&\quad + ( - {c_9}n_{72}^1 + {c_{47}}n_{62}^1 - {c_{63}}n_{52}^1){k_{42}}\\&\quad + {c_{27}}n_{222}^1 + {c_{61}}n_{192}^1\\ {\alpha _{19}}&= {c_{43}}{k_{72}}n_{121}^1 + {c_{43}}{k_{82}}n_{122}^1\\&\quad + {c_{44}}{k_{102}}n_{152}^1 + {c_{44}}{k_{92}}n_{151}^1 + {c_{45}}{k_{12}}n_{41}^1 + {c_{45}}{k_{_{22}}}n_{42}^1 \\ {}&\quad -- {c_{46}}{k_{32}}n_{71}^1 {c_{46}}{k_{42}}n_{72}^1\\ {\alpha _{20}}&= {c_{12}}{k_{102}}n_{162}^1 + {c_{12}}{k_{92}}n_{161}^1\\&\quad + {c_{16}}{k_{72}}n_{111}^1 + {c_{16}}{k_{82}}n_{112}^1 - {c_{18}}{k_{32}}n_{81}^1 \\ {}&\quad - {c_{18}}{k_{42}}n_{82}^1 - {c_{19}}{k_{12}}n_{31}^1 - {c_{19}}{k_{22}}n_{32}^1 \\&\quad + {c_{13}}n_{242}^1 + {c_{130}}n_{232}^1+ {c_{14}}n_{222}^1 + {c_{140}}n_{232}^1\\&\quad + {c_{141}}n_{202}^1\\ {\alpha _{21}}&= {c_{35}}{k_{32}}n_{71}^1 + {c_{35}}{k_{42}}n_{72}^1 + {c_{36}}{k_{12}}n_{41}^1\\&\quad + {c_{36}}{k_{22}}n_{42}^1 + {c_{37}}{k_{72}}n_{121}^1 + {c_{37}}{k_{82}}n_{122}^1 \\ {}&\quad + {c_{38}}{k_{102}}n_{152}^1 + {c_{38}}{k_{92}}n_{151}^1\\ {\alpha _{22}}&= {c_1}{k_{102}}n_{162}^1 + {c_1}{k_{92}}n_{161}^1 + {c_4}{k_{72}}n_{111}^1 + {c_4}{k_{82}}n_{112}^1 \\ {}&\quad + {c_{68}}{k_{12}}n_{31}^1 + {c_{68}}{k_{22}}n_{32}^1 + {c_{69}}{k_{32}}n_{81}^1\\&\quad + {c_{69}}{k_{42}}n_{82}^1 - {c_{42}}n_{222}^1 + {c_{52}}n_{182}^1\\ {\alpha _{23}}&= ({c_2}n_{162}^1 + {c_7}n_{152}^1 + {c_{50}}n_{142}^1 + {c_{51}}n_{132}^1){k_{106}}\\ {}&\quad + ({c_3}n_{111}^1 + {c_5}n_{91}^1 + {c_6}n_{121}^1 + {c_{49}}n_{10}^1){k_{76}}\\&\quad + ({c_3}n_{112}^1 + {c_5}n_{92}^1 + {c_6}n_{122}^1 + {c_{49}}n_{102}^1){k_{86}}\\ {}&\quad + ({c_2}n_{161}^1 + {c_7}n_{151}^1 + {c_{50}}n_{141}^1 + {c_{51}}n_{131}^1){k_{96}}\\&\quad + ( - {c_8}n_{41}^1 + {c_{11}}n_{21}^1 - {c_{64}}n_{11}^1){k_{16}}\\&\quad + ( - {c_8}n_{42}^1 + {c_{11}}n_{22}^1 - {c_{64}}n_{12}^1){k_{26}} \\ {}&\quad + ( - {c_9}n_{71}^1 + {c_{47}}n_{61}^1 - {c_{63}}n_{51}^1){k_{36}}\\&\quad - ({c_9}n_{72}^1 - {c_{47}}n_{62}^1 + {c_{63}}n_{52}^1){k_{46}}\\ {\alpha _{24}}&= {c_{43}}{k_{76}}n_{121}^1 + {c_{43}}{k_{86}}n_{122}^1 + {c_{44}}{k_{106}}n_{152}^1 \\ {}&\quad + {c_{44}}{k_{96}}n_{151}^1 + {c_{45}}{k_{16}}n_{41}^1\\&\quad + {c_{45}}{k_{26}}n_{42}^1 - {c_{46}}{k_{36}}n_{71}^1 - {c_{46}}{k_{46}}n_{72}^1\\ {\alpha _{25}}&= {c_{12}}{k_{106}}n_{162}^1 + {c_{12}}{k_{96}}n_{161}^1 + {c_{16}}{k_{76}}n_{111}^1 \\ {}&\quad + {c_{16}}{k_{86}}n_{112}^1 - {c_{18}}{k_{36}}n_{81}^1 - {c_{18}}{k_{46}}n_{82}^1\\&\quad - {c_{19}}{k_{16}}n_{31}^1 - {c_{19}}{k_{26}}n_{32}^1 - {c_{17}}n_{17}^1\\ {\alpha _{26}}&= {c_{70}}{c_{701}}{q_1}n_{521}^1,{\alpha _{27}} = {c_{70}}{c_{701}}{q_1}n_{522}^1,{\alpha _{28}}\\&\quad = {c_{70}}{c_{702}}{q_2}n_{181}^1,{\alpha _{29}} = {c_{70}}{c_{702}}{q_2}n_{182}^1\\ \end{aligned}$$

where \({\beta _0} \sim {\beta _{29}}\) can be obtained by changing the prime i of the corresponding term above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Hou, L. & Chen, Y. Investigation on the 1:2 internal resonance of an FGM blade. Nonlinear Dyn 107, 1937–1964 (2022). https://doi.org/10.1007/s11071-021-07070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07070-2

Keywords

Navigation