Skip to main content
Log in

Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The purpose of the current study was to develop an accurate model to investigate the nonlinear resonances in an axially functionally graded beam rotating with time-dependent speed. To this end, two important features including stiffening and Coriolis effects are modeled based on nonlinear strain relations. Equations governing the axial, chordwise, and flapwise deformations about the determined steady-state equilibrium position are obtained, and the rotating speed variation is considered as a periodic disturbance about this equilibrium condition. Multi-mode discretization of the equations is performed via the spectral Chebyshev approach and the method of multiple scales for gyroscopic systems is employed to study the nonlinear behavior. After determining the required polynomial number based on convergence analysis, results obtained are verified by comparing to those found in literature and numerical simulations. Moreover, the model is validated based on simulations carried out by commercial finite element software. Properties of the functionally graded material and the values of average rotating speed leading to 2:1 internal resonance in the system are found. Time and steady-state responses of the system under primary and parametric resonances caused by the time-dependent rotating speed are investigated when the system is tuned to 2:1 internal resonance. A comprehensive study on the time response, frequency response, and stability behavior shows that the rotating axially functionally graded beam exhibits a complicated nonlinear behavior under the effect of the rotating speed fluctuation frequency, damping coefficient, and properties of the functionally graded material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on a reasonable request.

References

  1. Yoo, H., Shin, S.: Vibration analysis of rotating cantilever beams. J. Sound Vib. 212, 807–828 (1998)

    Article  Google Scholar 

  2. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249, 147–164 (2002)

    Article  Google Scholar 

  3. Cai, G.-P., Hong, J.-Z., Yang, S.X.: Model study and active control of a rotating exible cantilever beam. Int. J. Mech. Sci. 46, 871–889 (2004)

    Article  MATH  Google Scholar 

  4. Younesian, D., Esmailzadeh, E.: Non-linear vibration of variable speed rotating viscoelastic beams. Nonlinear Dyn. 60, 193–205 (2010)

    Article  MATH  Google Scholar 

  5. Arvin, H., Arena, A., Lacarbonara, W.: Nonlinear vibration analysis of rotating beams undergoing parametric instability: Lagging-axial motion. Mech. Syst. Signal Process. 144, 106892 (2020)

    Article  Google Scholar 

  6. Oh, Y., Yoo, H.H.: Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials. Int. J. Mech. Sci. 119, 68–79 (2016)

    Article  Google Scholar 

  7. Banerjee, J.: Dynamic stiffness formulation and free vibration analysis of centrifugally stiff-ened Timoshenko beams. J. Sound Vib. 247, 97–115 (2001)

    Article  Google Scholar 

  8. Yang, J., Jiang, L., Chen, D.C.: Dynamic modelling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274, 863–875 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yao, M., Chen, Y., Zhang, W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68, 487–504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Banerjee, J., Kennedy, D.: Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. J. Sound Vib. 333, 7299–7312 (2014)

    Article  Google Scholar 

  11. Thomas, O., Sénéchal, A., Deü, J.-F.: Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dyn. 86, 1293–1318 (2016)

    Article  Google Scholar 

  12. Zhang, B., Li, Y.: Nonlinear vibration of rotating pre-deformed blade with thermal gradient. Nonlinear Dyn. 86, 459–478 (2016)

    Article  Google Scholar 

  13. Zhang, B., Zhang, Y.-L., Yang, X.-D., Chen, L.-Q.: Saturation and stability in internal resonance of a rotating blade under thermal gradient. J. Sound Vib. 440, 34–50 (2019)

    Article  Google Scholar 

  14. Zhang, B., Ding, H., Chen, L.-Q.: Subharmonic and combination resonance of rotating predeformed blades subjected to high gas pressure. Acta Mech. Solida Sin. 33, 635–649 (2020)

    Article  Google Scholar 

  15. Zhang, B., Ding, H., Chen, L.-Q.: Super-harmonic resonances of a rotating pre-deformed blade subjected to gas pressure. Nonlinear Dyn. 98, 2531–2549 (2019)

    Article  MATH  Google Scholar 

  16. Zhang, W., Liu, G., Siriguleng, B.: Saturation phenomena and nonlinear resonances of rotating pretwisted laminated composite blade under subsonic air ow excitation. J. Sound Vib. 478, 115353 (2020)

    Article  Google Scholar 

  17. Zhang, B., Ding, H., Chen, L.-Q.: Three to one internal resonances of a pre-deformed rotating beam with quadratic and cubic nonlinearities. Int. J. Non-Linear Mech. 126, 103552 (2020)

    Article  Google Scholar 

  18. Oh, S.-Y., Librescu, L., Song, O.: Vibration of turbomachinery rotating blades made-up of functionally graded materials and operating in a high temperature field. Acta Mech. 166, 69–87 (2003)

    Article  MATH  Google Scholar 

  19. Fazelzadeh, S.A., Hosseini, M.: Aerothermoelastic behavior of supersonic rotating thinwalled beams made of functionally graded materials. J. Uids Struc. 23, 1251–1264 (2007)

    Article  Google Scholar 

  20. Fazelzadeh, S., Malekzadeh, P., Zahedinejad, P., Hosseini, M.: Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic ow using the differential quadrature method. J. Sound Vib. 306, 333–348 (2007)

    Article  Google Scholar 

  21. Zarrinzadeh, H., Attarnejad, R., Shahba, A.: Free vibration of rotating axially functionally graded tapered beams. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 226, 363–379 (2012)

    Article  Google Scholar 

  22. Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A., Davari, E.: Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution. Mech. Adv. Mater. Struct. 25, 467–480 (2018)

    Article  Google Scholar 

  23. Chen, D., Zheng, S., Wang, Y., Yang, L., Li, Z.: Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis. Eur. J. Mech.-A/Solids 84, 104083 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through nonlinear normal modes. J. Vib. Acoust. 124, 229–236 (2002)

    Article  Google Scholar 

  25. Piovan, M.T., Sampaio, R.: A study on the dynamics of rotating beams with functionally graded properties. J. Sound Vib. 327, 134–143 (2009)

    Article  Google Scholar 

  26. Huang, C.L., Lin, W.Y., Hsiao, K.M.: Free vibration analysis of rotating Euler beams at high angular velocity. Comput. Struct. 88, 991–1001 (2010)

    Article  Google Scholar 

  27. Arvin, H., Bakhtiari-Nejad, F.: Non-linear modal analysis of a rotating beam. Int. J. Non-Linear Mech. 46, 877–897 (2011)

    Article  Google Scholar 

  28. Kim, H., Yoo, H.H., Chung, J.: Dynamic model for free vibration and response analysis of rotating beams. J. Sound Vib. 332, 5917–5928 (2013)

    Article  Google Scholar 

  29. Tian, J., Su, J., Zhou, K., Hua, H.: A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects. J. Sound Vib. 426, 258–277 (2018)

    Article  Google Scholar 

  30. Tian, J., Zhang, Z., Hua, H.: Free vibration analysis of rotating functionally graded doubletapered beam including porosities. Int. J. Mech. Sci. 150, 526–538 (2019)

    Article  Google Scholar 

  31. Li, L., Zhang, D., Zhu, W.: Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect. J. Sound Vib. 333, 1526–1541 (2014)

    Article  Google Scholar 

  32. Li, L., Zhang, D.: Dynamic analysis of rotating axially FG tapered beams based on a new rigid- exible coupled dynamic model using the B-spline method. Compos. Struct. 124, 357–367 (2015)

    Article  Google Scholar 

  33. Tornabene, F., Viola, E.: Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution. Eur. J. Mech.-A/Solids 28, 991–1013 (2009)

    Article  MATH  Google Scholar 

  34. Tornabene, F., Viola, E.: 2-D solution for free vibrations of parabolic shells using generalized differential quadrature method. Eur. J. Mech.-A/Solids 27, 1001–1025 (2008)

    Article  MATH  Google Scholar 

  35. Myrtle, T. F.: Development of an improved aeroelastic model for the investigation of vibration reduction in helicopter rotors using trailing edge aps. (1999)

  36. Somali, S., Davulcu, S.: Implicit midpoint rule and extrapolation to singularly perturbed boundary alue problems. Int. J. Comput. Math. 75, 117–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations (Wiley, 2008)

  38. Anamagh, M.R., Bediz, B.: Three-Dimensional Dynamics of Laminated Curved Composite Structures: A Spectral-Tchebychev Solution. In: Proceedings of the 14th International Confer- ence on Vibration Problems, pp. 845–855 (2021)

  39. Anamagh, M.R., Bediz, B.: Free vibration and buckling behavior of functionally graded porous plates reinforced by graphene platelets using spectral Chebyshev approach. Compos. Struct. 253, 112765 (2020)

    Article  Google Scholar 

  40. Yagci, B., Filiz, S., Romero, L.L., Ozdoganlar, O.B.: A spectral-Tchebychev technique for solving linear and nonlinear beam equations. J. Sound Vib. 321, 375–404 (2009)

    Article  Google Scholar 

  41. Bediz, B.: A spectral-Tchebychev solution technique for determining vibrational behavior of thick plates having arbitrary geometry. J. Sound Vib. 432, 272–289 (2018)

    Article  Google Scholar 

  42. Pasquetti, R., Rapetti, F.: Spectral element methods on triangles and quadrilaterals: comparisons and applications. J. Comput. Phys. 198, 349–362 (2004)

    Article  MATH  Google Scholar 

  43. Lotfan, S., Anamagh, M.R., Bediz, B.: A general higher-order model for vibration analysis of axially moving doubly-curved panels/shells. Thin-Walled Struct. 164, 107813 (2021)

    Article  Google Scholar 

  44. Filiz, S., Bediz, B., Romero, L., Ozdoganlar, O.B.: A spectral-Tchebychev solution for three-dimensional vibrations of parallelepipeds under mixed boundary conditions. J. Appl. Mech. 79, 1 (2012)

    Article  Google Scholar 

  45. Serhat, G., Anamagh, M.R., Bediz, B., Basdogan, I.: Dynamic analysis of doubly curved composite panels using lamination parameters and spectral-Tchebychev method. Comput. Struct. 239, 106294 (2020)

    Article  Google Scholar 

  46. Bediz, B., Aksoy, S.: A spectral-Tchebychev solution for three-dimensional dynamics of curved beams under mixed boundary conditions. J. Sound Vib. 413, 26–40 (2018)

    Article  Google Scholar 

  47. Sadeghi, M.H., Lotfan, S.: Identification of non-linear parameter of a cantilever beam model with boundary condition non-linearity in the presence of noise: an NSI-and ANNbased approach. Acta Mech. 228, 4451–4469 (2017)

    Article  MathSciNet  Google Scholar 

  48. Lotfan, S., Sadeghi, M.H.: Large amplitude free vibration of a viscoelastic beam carrying a lumped mass-spring-damper. Nonlinear Dyn. 90, 1053–1075 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lotfan, S.: Nonlinear modal interactions in a beam-mass system tuned to 3: 1 and combination internal resonances based on correspondence between MTS and NSI methods. Mech. Syst. Signal Process. 164, 108221 (2022)

    Article  Google Scholar 

  50. Rezaee, M., Lotfan, S.: Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity. Int. J. Mech. Sci. 96, 36–46 (2015)

    Article  Google Scholar 

  51. Zinati, R. F., Rezaee, M., Lotfan, S.: Nonlinear vibration and stability analysis of viscoelastic rayleigh beams axially moving on a exible intermediate support. Iran. J. Sci. Technol. Trans. Mech. Eng.1–15 (2019)

  52. Cigeroglu, E., Samandari, H.: Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions. Physica E 46, 160–173 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Lotfan.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: FGM profiles

Some of FGM profiles used in this research are illustrated via numerical examples in Fig. 14. In this figure variations of the ceramic volume fraction are provided for six sets of a, b, and c parameters as a function of the volume fraction index p. It can be seen that the exploited distribution function can construct symmetric/asymmetric volume fraction variations along the beam.

Fig. 14
figure 14

Variations of the ceramic volume fraction \(V_c\) along the beam for different values of the parameters a, b, c and the volume fraction index p: a \(\mathrm {FGM}_{(a=1/b=0.8/c=1/p=0.1k)}\), b \(\mathrm {FGM}_{(a=1.5/b=0.8/c=2/p=0.1k)}\), c \(\mathrm {FGM}_{(a=1.8/b=1.8/c=2/p=0.1k)}\), d \(\mathrm {FGM}_{(a=2/b=2/c=3/p=0.1k)}\), e \(\mathrm {FGM}_{(a=1.8/b=1.6/c=5/p=0.1k)}\), and f \(\mathrm {FGM}_{(a=4/b=3/c=3/p=2k)}\), for \(k=0,1,2,...,50\)

Appendix B: Matrix elements

Here, the details of the matrices in Eq. (33) are given:

$$\begin{aligned}&{\mathbf {M}}=\begin{bmatrix} \mathbf {M_{uu}} &{} {\mathbf {0}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} \mathbf {M_{vv}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf {0}} &{} \mathbf {M_{ww}}\end{bmatrix},\ {\mathbf {G}}=\begin{bmatrix} {\mathbf {0}} &{} \mathbf {G_{uv}} &{} {\mathbf {0}}\\ \mathbf {G_{vu}} &{} {\mathbf {0}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {0}}\end{bmatrix},\nonumber \\&{\mathbf {K}}_1=\begin{bmatrix} {\mathbf {K}}_{\mathbf {uu}_1} &{} {\mathbf {0}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf {K}}_{\mathbf {vv}_1} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {K}}_{\mathbf {ww}_1}\end{bmatrix},\nonumber \\&{\mathbf {K}}_2=\begin{bmatrix} {\mathbf {K}}_{\mathbf {uu}_2} &{} {\mathbf {0}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf {K}}_{\mathbf {vv}_2} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {K}}_{\mathbf {ww}_2}\end{bmatrix},\ {\mathbf {K}}_3=\begin{bmatrix} {\mathbf {0}} &{} \mathbf {K_{uv}} &{} {\mathbf {0}}\\ \mathbf {K}_\mathbf{vu} &{} {\mathbf {0}} &{} {\mathbf {0}}\\ {\mathbf {0}} &{} {\mathbf {0}} &{} {\mathbf {0}}\end{bmatrix},\nonumber \\&{\mathbf {C}}\!=\!\lambda ({\mathbf {K}}_1\!+\!\omega _0^2{\mathbf {K}}_2),\ \mathbf {NL}({\mathbf {q}}_s)\!=\!\begin{Bmatrix} {\mathbf {0}}\\ \mathbf {NL_{v}}\\\mathbf {NL_{w}}\end{Bmatrix},\ {\mathbf {f}}\!=\!\begin{Bmatrix} {\mathbf {0}}\\ \mathbf {f_{v}}\\{\mathbf {0}}\end{Bmatrix} \end{aligned}$$
(B.1)

where the elements are calculated by

$$\begin{aligned}&\mathbf {M_{uu}}=-{\mathbf {K}}_{\mathbf {uu}_2}=A{\mathbf {P}}_1^\mathrm {T}{\mathbf {V}}_1{\mathbf {P}}_1 \end{aligned}$$
(B.2)
$$\begin{aligned}&\mathbf {M_{vv}}=-{\mathbf {K}}_{\mathbf {vv}_2}=A{\mathbf {P}}_2^\mathrm {T} {\mathbf {V}}_1{\mathbf {P}}_2-I_z({\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_1 {\mathbf {Q}}_2{\mathbf {P}}_2\nonumber \\&\quad +{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_2{\mathbf {Q}}_1 {\mathbf {P}}_2) \end{aligned}$$
(B.3)
$$\begin{aligned}&\mathbf {M_{ww}}=A{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_1{\mathbf {P}}_3-I_y({\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_1{\mathbf {Q}}_2{\mathbf {P}}_3+{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_2{\mathbf {Q}}_1{\mathbf {P}}_3) \end{aligned}$$
(B.4)
$$\begin{aligned}&\mathbf {G_{uv}}=\mathbf {K_{uv}}=-A{\mathbf {P}}_1^\mathrm {T}{\mathbf {V}}_1{\mathbf {P}}_2 \end{aligned}$$
(B.5)
$$\begin{aligned}&\mathbf {G_{vu}}=\mathbf {K_{vu}}=A{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_1{\mathbf {P}}_1 \end{aligned}$$
(B.6)
$$\begin{aligned}&{\mathbf {K}}_{\mathbf {uu}_1}=-A({\mathbf {P}}_1^\mathrm {T}{\mathbf {V}}_3{\mathbf {Q}}_2{\mathbf {P}}_1+{\mathbf {P}}_1^\mathrm {T}{\mathbf {V}}_4{\mathbf {Q}}_1{\mathbf {P}}_1) \end{aligned}$$
(B.7)
$$\begin{aligned}&{\mathbf {K}}_{\mathbf {vv}_1}=I_z({\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_3{\mathbf {Q}}_4{\mathbf {P}}_2+2{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_4{\mathbf {Q}}_3{\mathbf {P}}_2+{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_5{\mathbf {Q}}_2{\mathbf {P}}_2)\nonumber \\&\qquad \qquad -A({\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_6{\mathbf {Q}}_2{\mathbf {P}}_2+{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_7{\mathbf {Q}}_1{\mathbf {P}}_2+{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_8{\mathbf {Q}}_1{\mathbf {P}}_2) \end{aligned}$$
(B.8)
$$\begin{aligned}&{\mathbf {K}}_{\mathbf {ww}_1}=I_y({\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_3 {\mathbf {Q}}_4{\mathbf {P}}_3+2{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_4 {\mathbf {Q}}_3{\mathbf {P}}_3+{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_5 {\mathbf {Q}}_2{\mathbf {P}}_3)\nonumber \\&\qquad -A({\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_6{\mathbf {Q}}_2{\mathbf {P}}_3 +{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_7{\mathbf {Q}}_1{\mathbf {P}}_3 +{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_8{\mathbf {Q}}_1{\mathbf {P}}_3)\nonumber \\ \end{aligned}$$
(B.9)
$$\begin{aligned}&{\mathbf {K}}_{\mathbf {ww}_2}=I_y({\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_1 {\mathbf {Q}}_2{\mathbf {P}}_3+{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_2{\mathbf {Q}}_1 {\mathbf {P}}_3) \end{aligned}$$
(B.10)
$$\begin{aligned}&\mathbf {NL}_{\mathbf {v}}({\mathbf {q}}_s) =-A{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_3\big [({\mathbf {Q}}_2{\mathbf {P}}_1 {\mathbf {q}}_{d_1})\circ ({\mathbf {Q}}_1{\mathbf {P}}_2{\mathbf {q}}_{d_2})\big ]\nonumber \\&-A{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_3\big [({\mathbf {Q}}_1{\mathbf {P}}_1 {\mathbf {q}}_{d_1})\circ ({\mathbf {Q}}_2{\mathbf {P}}_2{\mathbf {q}}_{d_2})\big ]\nonumber \\&\qquad \qquad -A{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_4 \big [({\mathbf {Q}}_1{\mathbf {P}}_1{\mathbf {q}}_{d_1})\circ ({\mathbf {Q}}_1{\mathbf {P}}_2 {\mathbf {q}}_{d_2})\big ] \end{aligned}$$
(B.11)
$$\begin{aligned}&\mathbf {NL}_{\mathbf {w}}({\mathbf {q}}_s)=-A{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_3 \big [({\mathbf {Q}}_2{\mathbf {P}}_1{\mathbf {q}}_{d_1})\circ ({\mathbf {Q}}_1{\mathbf {P}}_3 {\mathbf {q}}_{d_3})\big ]\nonumber \\&\qquad -A{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_3 \big [({\mathbf {Q}}_1{\mathbf {P}}_1{\mathbf {q}}_{d_1})\circ ({\mathbf {Q}}_2{\mathbf {P}}_3 {\mathbf {q}}_{d_3})\big ]\nonumber \\&\qquad -A{\mathbf {P}}_3^\mathrm {T}{\mathbf {V}}_4 \big [({\mathbf {Q}}_1{\mathbf {P}}_1{\mathbf {q}}_{d_1})\circ ({\mathbf {Q}}_1{\mathbf {P}}_3 {\mathbf {q}}_{d_3})\big ] \end{aligned}$$
(B.12)
$$\begin{aligned}&\mathbf {f_v}\!=\!(I_z{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_2\!-\!Ar_h{\mathbf {P}}_2^\mathrm {T} {\mathbf {V}}_1-A{\mathbf {P}}_2^\mathrm {T}{\mathbf {V}}_9){\mathbf {f_I}} \end{aligned}$$
(B.13)

In all the above equations, \({\mathbf {Q}}_i\) is the differentiation matrix representing the ith derivative with respect to \(\xi \), \(\circ \) symbol shows the element-wise multiplication, \({\mathbf {f_I}}\) is a vector of ones, and weighted inner product matrices are defined by

$$\begin{aligned}&\int _{\xi }\big \{\rho (\xi ),\rho ^\prime (\xi ),E(\xi ),E^\prime (\xi ), E^{\prime \prime }(\xi ),\nonumber \\&\qquad E(\xi )u_s^\prime (\xi ),E(\xi )u_s^{\prime \prime }(\xi ), E^{\prime }(\xi )u_s^{\prime }(\xi ),\nonumber \\&\qquad \rho (\xi )(\xi +u_s(\xi ))\big \}f(\xi )g(\xi )\mathrm {d}\xi \nonumber \\&\quad = {\mathbf {f}}^\mathrm {T}\big \{{\mathbf {V}}_1,{\mathbf {V}}_2,{\mathbf {V}}_3, {\mathbf {V}}_4,{\mathbf {V}}_5,{\mathbf {V}}_6,{\mathbf {V}}_7,{\mathbf {V}}_8, {\mathbf {V}}_9\big \}{\mathbf {g}} \end{aligned}$$
(B.14)

Appendix C: Coefficients \(\mu \) and \(\Delta \)

By inserting solutions (43) and (44) into Eq. (41) for \(i=1,2,..N_e-1\), and equating the coefficients of \(\exp (I\omega _n^cT_0)\) on both sides of the resulting equations for \(n=1,2,...,N_e\), \(N_e\) number of linear algebraic systems including \(N_e-1\) number of equations are derived as

$$\begin{aligned}&2I\omega _0\sum _{j=1,j\ne i}^{N_e}\omega _n^c{\hat{g}}_{i,j}\mu _{j,n}+(\omega _i^2-{\omega _n^c}^2)\mu _{i,n}=0,\nonumber \\&\quad n = 1,2,...,N_e,\ i =1,2,...,N_e-1 \end{aligned}$$
(C.1)

One should note that according to the assumed solutions \(\mu _{1,n} = 1\). Based on the same balancing for coefficients of \(\exp (I\Omega T_0)\), we have

$$\begin{aligned}&2I\omega _0\Omega \sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\Delta _j+(\omega _i^2-\Omega ^2)\Delta _i=\frac{\gamma \Omega {\hat{f}}_i}{2},\nonumber \\&\quad i = 1,2,...,N_e \end{aligned}$$
(C.2)

By solving these linear algebraic systems of equations, coefficients \(\mu _{i,j}\) and \(\Delta _i\) can be determined.

Appendix D: Right-hand side terms

  • For non-resonant \(\Omega \) without internal resonance:

$$\begin{aligned}&R_{i,l}=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,l}\mathrm {D}_1A_l+2I{\omega _l^c}\mu _{i,l}\mathrm {D}_1A_l\nonumber \\&\quad +\lambda I\omega _i^2\omega _l^c\mu _{i,l}A_l,\quad i,l = 1,2,...,N_e \end{aligned}$$
(D.1)
  • For non-resonant \(\Omega \) with internal resonance (\(\omega _m^c = 2\omega _n^c+\epsilon \sigma _0\)):

$$\begin{aligned} R_{i,l}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,l}\mathrm {D}_1A_l\nonumber \\&\quad +2I{\omega _l^c}\mu _{i,l}\mathrm {D}_1A_l\nonumber \\&\quad +\lambda I\omega _i^2\omega _l^c\mu _{i,l}A_l,\nonumber \\ R_{i,n}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,n}\mathrm {D}_1A_n+2I{\omega _n^c}\mu _{i,n}\mathrm {D}_1A_n\nonumber \\&\quad +\lambda I\omega _i^2\omega _n^c\mu _{i,n}A_n\nonumber \\&\quad +\exp (I\sigma _0T_1)\sum _{j=1}^{N_e}\sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}} {\bar{\mu }}_{k,n}{\bar{A}}_n\mu _{j,m}A_m,\nonumber \\ R_{i,m}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,m}\mathrm {D}_1A_m\nonumber \\&\quad +2I{\omega _m^c}\mu _{i,m}\mathrm {D}_1A_m\nonumber \\&\quad +\lambda I\omega _i^2\omega _m^c\mu _{i,m}A_m\nonumber \\&\quad +\exp (-I\sigma _0T_1)\sum _{j=1}^{N_e}\sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}}\mu _{j,n}\mu _{k,n}A_n^2,\nonumber \\&\quad i,l=1,2,...,N_e,\ l\ne m,n,\ 2\le m\le N_e,\nonumber \\&\quad 1\le n\le N_e-1 \end{aligned}$$
(D.2)
  • For case with \(\Omega \) near \(\omega _n^c\) (\(\Omega = \omega _n^c+\epsilon \sigma _1\)):

$$\begin{aligned} R_{i,l}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,l} \mathrm {D}_1A_l+2I{\omega _l^c}\mu _{i,l}\mathrm {D}_1A_l\nonumber \\&\quad +\lambda I\omega _i^2\omega _l^c\mu _{i,l}A_l,\nonumber \\ R_{n,n}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{n,j}\mu _{j,n}\mathrm {D}_1A_n+2I{\omega _n^c}\mu _{n,n}\mathrm {D}_1A_n\nonumber \\&\quad +\lambda I\omega _n^2\omega _n^c\mu _{n,n}A_n-\exp (I\sigma _1T_1)\frac{\gamma {\hat{f}}_n\Omega }{2},\nonumber \\&i,l=1,2,...,N_e,\ i\ne n,\ 1\le n\le N_e \end{aligned}$$
(D.3)
  • For case with \(\Omega \) near \(\omega _n^c\) and internal resonance (\(\Omega = \omega _n^c+\epsilon \sigma _1\), \(\omega _m^c = 2\omega _n^c+\epsilon \sigma _0\)):

$$\begin{aligned} R_{i,l}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,l} \mathrm {D}_1A_l+2I{\omega _l^c}\mu _{i,l}\mathrm {D}_1A_l\nonumber \\&\quad +\lambda I\omega _i^2\omega _l^c\mu _{i,l}A_l,\nonumber \\ R_{i,n}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,n}\mathrm {D}_1A_n\nonumber \\&\quad +2I{\omega _n^c}\mu _{i,n}\mathrm {D}_1A_n+\lambda I\omega _i^2\omega _n^c\mu _{i,n}A_n\nonumber \\&+\exp (I\sigma _0T_1)\sum _{j=1}^{N_e}\sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}}{\bar{\mu }}_{k,n}{\bar{A}}_n\mu _{j,m}A_m,\nonumber \\ R_{n,n}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{n,j}\mu _{j,n}\mathrm {D}_1A_n+2I{\omega _n^c}\mu _{n,n}\mathrm {D}_1A_n\nonumber \\&\quad +\lambda I\omega _n^2\omega _n^c\mu _{n,n}A_n\nonumber \\&\quad +\exp (I\sigma _0T_1)\sum _{j=1}^{N_e}\sum _{k=1}^{N_e}{\hat{f}}_{nl_{n,j,k}}{\bar{\mu }}_{k,n}{\bar{A}}_n\mu _{j,m}A_m\nonumber \\&\quad -\exp (I\sigma _1T_1)\frac{\gamma {\hat{f}}_n\Omega }{2},\nonumber \\ R_{i,m}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,m}\mathrm {D}_1A_m\nonumber \\&\quad +2I{\omega _m^c}\mu _{i,m}\mathrm {D}_1A_m+\lambda I\omega _i^2\omega _m^c\mu _{i,m}A_m\nonumber \\&\quad +\exp (-I\sigma _0T_1)\sum _{j=1}^{N_e}\nonumber \\&\quad \sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}}\mu _{j,n}\mu _{k,n}A_n^2,\nonumber \\&\quad i,l=1,2,...,N_e,\ i\ne n,\ l\ne m,n,\nonumber \\&\quad 2\le m\le N_e,\ 1\le n\le N_e-1 \end{aligned}$$
(D.4)
  • For case with \(\Omega \) near \(2\omega _n^c\) (\(\Omega = 2\omega _n^c+\epsilon \sigma _2\)):

$$\begin{aligned} R_{i,l}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,l}\mathrm {D}_1A_l\nonumber \\&\quad +2I{\omega _l^c}\mu _{i,l}\mathrm {D}_1A_l+\lambda I\omega _i^2\omega _l^c\mu _{i,l}A_l,\nonumber \\ R_{i,n}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,n}\mathrm {D}_1A_n\nonumber \\&\quad +2I{\omega _n^c}\mu _{i,n}\mathrm {D}_1A_n+\lambda I\omega _i^2\omega _n^c\mu _{i,n}A_n\nonumber \\&\quad -\exp (I\sigma _2T_1)\bigg (\gamma \omega _n^c\sum _{j=1,j\ne i}^{N_e}\nonumber \\&\quad {\hat{g}}_{i,j}{\bar{\mu }}_{j,n}{\bar{A}}_n+I\gamma \omega _0\sum _{j=1}^{N_e}{\hat{k}}_{2_{i,j}}{\bar{\mu }}_{j,n}{\bar{A}}_n\nonumber \\&-\frac{1}{2}\gamma \Omega \sum _{j=1,j\ne i}^{N_e}{\hat{k}}_{3_{i,j}}{\bar{\mu }}_{j,n}{\bar{A}}_n\nonumber \\&\quad -\sum _{j=1}^{N_e}\sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}}\Delta _j{\bar{\mu }}_{k,n}{\bar{A}}_n\bigg ),\nonumber \\&\quad i,l=1,2,...,N_e,\ l\ne n,\ 1\le n\le N_e \end{aligned}$$
(D.5)
  • For case with \(\Omega \) near \(2\omega _n^c\) and internal resonance (\(\Omega = 2\omega _n^c+\epsilon \sigma _2\), \(\omega _m^c = 2\omega _n^c+\epsilon \sigma _0\)):

$$\begin{aligned} R_{i,l}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,l}\mathrm {D}_1A_l\nonumber \\&\quad +2I{\omega _l^c}\mu _{i,l}\mathrm {D}_1A_l+\lambda I\omega _i^2\omega _l^c\mu _{i,l}A_l,\nonumber \\ R_{i,n}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,n}\mathrm {D}_1A_n\nonumber \\&\quad +2I{\omega _n^c}\mu _{i,n}\mathrm {D}_1A_n+\lambda I\omega _i^2\omega _n^c\mu _{i,n}A_n\nonumber \\&\quad -\exp (I\sigma _2T_1)\bigg (\gamma \omega _n^c\nonumber \\&\quad \sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}{\bar{\mu }}_{j,n}{\bar{A}}_n\nonumber \\&\quad +I\gamma \omega _0\sum _{j=1}^{N_e}{\hat{k}}_{2_{i,j}}{\bar{\mu }}_{j,n}{\bar{A}}_n-\frac{1}{2}\gamma \Omega \nonumber \\&\quad \sum _{j=1,j\ne i}^{N_e}{\hat{k}}_{3_{i,j}}{\bar{\mu }}_{j,n}{\bar{A}}_n\nonumber \\&\quad -\sum _{j=1}^{N_e}\sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}}\Delta _j{\bar{\mu }}_{k,n} {\bar{A}}_n\bigg )\nonumber \\&\quad +\exp (I\sigma _0T_1)\sum _{j=1}^{N_e}\sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}}{\bar{\mu }}_{k,n}{\bar{A}}_n\mu _{j,m}A_m,\nonumber \\ R_{i,m}&=2\omega _0\sum _{j=1,j\ne i}^{N_e}{\hat{g}}_{i,j}\mu _{j,m}\mathrm {D}_1A_m\nonumber \\&\quad +2I{\omega _m^c}\mu _{i,m}\mathrm {D}_1A_m+\lambda I\omega _i^2\omega _m^c\mu _{i,m}A_m\nonumber \\&\quad +\exp (-I\sigma _0T_1)\sum _{j=1}^{N_e}\nonumber \\&\quad \sum _{k=1}^{N_e}{\hat{f}}_{nl_{i,j,k}}\mu _{j,n}\mu _{k,n}A_n^2,\nonumber \\&\quad i,l=1,2,...,N_e,\ l\ne m,n,\ 2\le m\le N_e,\ \nonumber \\&\quad 1\le n\le N_e-1 \end{aligned}$$
(D.6)

Appendix E: Convergence analysis

To determine the number of polynomials used in the solution technique, a convergence analysis is carried out. In this analysis, the polynomial number is gradually increased, and the predicted natural frequencies are compared with a reference values calculated using a large polynomial number. To quantitatively assess the level of convergence, a relative logarithmic assessment approach given by the following equation is used

$$\begin{aligned} LCV_N = \log \bigg (\frac{1}{K}\sum _{i=1}^K\frac{\big |\omega _{i_N}^c-\omega _{i_{ref}}^c\big |}{\omega _{i_{ref}}^c}\bigg ) \end{aligned}$$
(E.1)

Here, LCV is the logarithmic convergence value, \(\omega _{i_N}^c\) refers to the natural frequency of the \(i^{th}\) vibration mode calculated using N number of polynomials, \(\omega _{i_{ref}}^c\) is the natural frequency of the reference case (obtained using large polynomial numbers), and K shows the number of interested modes. Note that this convergence analysis can be performed for a single mode or several selected modes of the system. To determine the sufficient number of polynomials, \(LCV_N<\varepsilon \) should be satisfied (where \(\varepsilon \) is the threshold value selected by the user).

Fig. 15
figure 15

Convergence plots for dimensionless natural frequencies of an axially FG rotating beam based on spectral Chebyshev approach as a function of dimensionless rotating speed for \(\delta =0\), \({\hat{\omega }}_0=10\), and \(\alpha =70\): a Isotropic material i.e. \(p=0\), b \(\mathrm {FGM}_{(a=1/b=0.8/c=1/p=0.4)}\), c \(\mathrm {FGM}_{(a=1/b=1/c=2/p=1)}\), and d \(\mathrm {FGM}_{(a=1.5/b=0.8/c=2/p=1.6)}\)

Convergence plots for different volume fraction parameters as a function of dimensionless angular velocity are depicted in Fig. 15. Note that, to present the convergence in terms of contour plots, a linear interpolation is used since LCVs are defined only for integer number of polynomials. In this figure, LC values are obtained as an average of the convergence of the first eight natural frequencies in the system, i.e. \(K=8\), and for the reference case, \(N=30\) is considered. Each colored contour corresponds to a level of LCV, and the numbers are the corresponding values. According to this figure, the FGM distribution parameters does not affect the convergence behavior; however, as the rotating velocity increases, the number of polynomials necessary to obtain results with the same convergence performance increases. Accordingly, by considering the minimum error threshold to be \(0.01\%\) (\(LCV = -4\)) and maximum value to be \(0.4\%\) (\(LCV = -2.4\)), the number of polynomials is set to 11 shown with red horizontal line.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfan, S., Anamagh, M.R., Bediz, B. et al. Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects. Nonlinear Dyn 107, 533–558 (2022). https://doi.org/10.1007/s11071-021-07055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07055-1

Keywords

Navigation