Skip to main content
Log in

Planar dual-hoist dynamics of quadcopters carrying slender loads

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Quadcopters typically suspend large-size loads by dual-hoist mechanisms for material-handling services. The dual-hoist dynamics exhibit complex coupling effects between the quadcopter attitude and distributed-mass loads. Therefore, manipulation is a challenging task due to the dual-hoist dynamics. Some progress has been focused on single-hoist dynamics of quadcopters slung loads. However, little attention has been directed at dual-hoist dynamics. A planar dual-hoist dynamic model in near-hover operation can be noted in this article, and simultaneously used to design an oscillation-control method so as to facilitate flying such aerial cranes. Technological achievements presented in simulations exhibit the dynamic behavior of the analytical model and demonstrate that the control method succeeded in restraining the quadcopter attitude and load oscillations. The theoretical findings in this article might extend to other types of aerial cranes, such as helicopters or tiltrotors slung loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statements

Data will be made available from the corresponding author on reasonable request.

References

  1. Glida, H., Abdou, L., Chelihi, A., et al.: Optimal model-free backstepping control for a quadrotor helicopter. Nonlinear Dyn. 100(4), 3449–3468 (2020)

    Article  Google Scholar 

  2. Eskandarpour, A., Sharf, I.: A constrained error-based MPC for path following of quadrotor with stability analysis. Nonlinear Dyn. 99(2), 899–918 (2020)

    Article  Google Scholar 

  3. Harshavarthini, S., Sakthivel, R., Ahn, C.: Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults. Nonlinear Dyn. 96(4), 2681–2692 (2019)

    Article  Google Scholar 

  4. Ansari, U., Bajodah, A., Kada, B.: Development and experimental investigation of a Quadrotor’s robust generalized dynamic inversion control system. Nonlinear Dyn. 96(2), 1541–1557 (2019)

    Article  Google Scholar 

  5. Xu, Q., Wang, Z., Zhen, Z.: Adaptive neural network finite time control for quadrotor UAV with unknown input saturation. Nonlinear Dyn. 98(3), 1973–1998 (2019)

    Article  Google Scholar 

  6. Tang, S., Wüest, V., Kumar, V.: Aggressive flight with suspended payloads using vision-based control. IEEE Robot. Autom. Lett. 3(2), 1152–1159 (2018)

    Article  Google Scholar 

  7. Vahdanipour, M., Khodabandeh, M.: Adaptive fractional order sliding mode control for a quadcopter with a varying load. Aerosp. Sci. Technol. 86, 737–747 (2019)

    Article  Google Scholar 

  8. Dong, W., Ding, Y., Yang, L., et al.: An efficient approach for stability analysis and parameter tuning in delayed feedback control of a flying robot carrying a suspended load. J. Dyn. Syst. Measur. Control 141(8), 081015 (2019)

    Article  Google Scholar 

  9. Liang, X., Fang, Y., Sun, N., et al.: A novel energy-coupling-based hierarchical control approach for unmanned quadcopter transportation systems. IEEE/ASME Trans. Mechatron. 24(1), 248–259 (2019)

    Article  Google Scholar 

  10. De Angelis, E., Giulietti, F., Pipeleers, G.: Two-time-scale control of a multirotor aircraft for suspended load transportation. Aerosp. Sci. Technol. 84, 193–203 (2019)

    Article  Google Scholar 

  11. Yang, S., Xian, B.: Energy-based nonlinear adaptive control design for the Quadcopter UAV system with a suspended payload. IEEE Trans. Industr. Electron. 67(3), 2054–2064 (2019)

    Article  Google Scholar 

  12. Godbole, A.R., Subbarao, K.: Nonlinear control of unmanned aerial vehicles with cable suspended payloads. Aerospace Science and Technology, vol. 93, p.105299 (2019)

  13. Yu, G., Cabecinhas, D., Cunha, R., et al.: Nonlinear backstepping control of a quadrotor-slung load system. IEEE/ASME Trans. Mechatron. 24(5), 2304–2315 (2019)

    Article  Google Scholar 

  14. Bin, X., Wang, S., Yang, S.: Nonlinear adaptive control for an unmanned aerial payload transportation system: theory and experimental validation. Nonlinear Dyn. 98(3), 1745–1760 (2019)

    Article  Google Scholar 

  15. Cruz, P., Fierro, R.: Cable-suspended load lifting by a quadcopter UAV: hybrid model, trajectory generation, and control. Auton. Robot. 41(8), 1629–1643 (2017)

    Article  Google Scholar 

  16. Sayyaadi, H., Soltani, A.: Modeling and control for cooperative transport of a slung fluid container using quadcopter. Chin. J. Aeronaut. 31(2), 262–272 (2018)

    Article  Google Scholar 

  17. Barikbin, B., Fakharian, A.: Trajectory tracking for quadcopter UAV transporting cable-suspended payload in wind presence. Trans. Inst. Meas. Control. 41(5), 1243–1255 (2019)

    Article  Google Scholar 

  18. Mohammadi, A., Abbasi, E., Ghayour, M., et al.: Formation control and path tracking for a group of quadcopter to carry out a suspended load. Modares Mech. Eng. 19(4), 887–899 (2019)

    Google Scholar 

  19. Cabecinhas, D., Cunha, R., Silvestre, C.: A trajectory tracking control law for a Quadcopter with slung load. Automatica 106, 384–389 (2019)

    Article  Google Scholar 

  20. Guo, M., Gu, D., Zha, W., et al.: Controlling a quadcopter carrying a cable-suspended load to pass through a window. J. Intell. Robot. Syst. 98, 387–401 (2020)

    Article  Google Scholar 

  21. Qian, L., Liu, H.: Path following control of a quadcopter UAV with a cable suspended payload under wind disturbances. IEEE Trans. Industr. Electron. 67(3), 2021–2029 (2019)

    Article  Google Scholar 

  22. Cabecinhas, D., Cunha, R., Silvestre, C.: A trajectory tracking control law for a quadrotor with slung load. Automatica 106, 384–389 (2019)

    Article  MathSciNet  Google Scholar 

  23. Qian, L., Liu, H.: Path following control of a quadrotor UAV with a cable suspended payload under wind disturbances. IEEE Trans. Industr. Electron. 67(3), 2021–2029 (2019)

    Article  Google Scholar 

  24. Hashemi, D., Heidari, H.: Trajectory planning of Quadrotor UAV with maximum payload and minimum oscillation of suspended load using optimal control. J. Intell. Rob. Syst. 100, 1369–1381 (2020)

    Article  Google Scholar 

  25. Ogunbodede, O., Yoshinaga, R., Singh, T.: Vibration control of unmanned aerial vehicle with suspended load using the concept of differential flatness. In: American Control Conference, Philadelphia, PA, USA, pp. 4268–4273 (2019)

  26. Homolka, P., Hromčík, M., Vyhlídal, T.: Input shaping solutions for drones with suspended load: First results. In: International Conference on Process Control, Strbske Pleso, Slovakia, pp. 30–35 (2017)

  27. Palunko, I., Cruz, P., Fierro, R.: Agile load transportation: safe and efficient load manipulation with aerial robots. IEEE Robot. Autom. Mag. 19(3), 69–79 (2012)

    Article  Google Scholar 

  28. Sadr, S., Moosavian, A., Zarafshan, P.: Dynamics modeling and control of a quadcopter with swing load. J. Robot., 265897 (2014)

  29. Cruz, P., Oishi, M., Fierro, R.: Lift of a cable-suspended load by a quadcopter: a hybrid system approach. In: American Control Conference, Chicago, IL, USA, pp. 1887–1892 (2015)

  30. Johnson, N., Singhose, W.: Dynamics and modeling of a quadcopter with a suspended payload. In: Applied Aerodynamics Conference, Atlanta, Georgia, USA, p. 4213 (2018)

  31. de Angelis, E.: Swing angle estimation for multicopter slung load applications. Aerosp. Sci. Technol. 89, 264–274 (2019)

    Article  Google Scholar 

  32. Gupta, N., Bryson, A.: Near-hover control of a helicopter with a hanging load. J. Aircr. 13(3), 217–222 (1976)

    Article  Google Scholar 

  33. Enciu, K., Rosen, A.: Nonlinear dynamical characteristics of fin-stabilized underslung loads. AIAA J. 53(3), 723–738 (2015)

    Article  Google Scholar 

  34. Cao, Y., Wang, Z.: Equilibrium characteristics and stability analysis of helicopter slung-load system. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231(6), 1056–1064 (2016)

    Article  Google Scholar 

  35. Rego, B.S., Raffo, G.V.: Suspended load path tracking control using a tilt-rotor UAV based on zonotopic state estimation. J. Franklin Inst. 356(4), 1695–1729 (2019)

    Article  MathSciNet  Google Scholar 

  36. Erskine, J., Chriette, A., Caro, S.: Wrench analysis of cable-suspended parallel robots actuated by quadcopter unmanned aerial vehicles. J. Mech. Robotics 11(2), 020909 (2019)

    Article  Google Scholar 

  37. Shirani, B., Majdeddin, N., Izadi, I.: Cooperative load transportation using multiple UAVs. Aerosp. Sci. Technol. 84, 158–169 (2019)

    Article  Google Scholar 

  38. Kane, T., Likins, P., Levinson, D.: Spacecraft Dynamics. The Internet-First University Press (2005)

  39. Adams, C., Potter, J., Singhose, W.: Input-shaping and model-following control of a helicopter carrying a suspended load. J. Guid. Control. Dyn. 38(1), 94–105 (2015)

    Article  Google Scholar 

  40. Baklouti, S., Courteille, E., Lemoine, P., Caro, S.: Input shaping for feed-forward control of cable-driven parallel robots. J. Dyn. Syst. Measurement Control 143(2), 021007 (2021)

    Article  Google Scholar 

  41. Zhao, X., Huang, J.: Distributed-mass payload dynamics and control of dual cranes undergoing planar motions. Mech. Syst. Signal Process. 126, 636–648 (2019)

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge the support of the National Natural Science Foundation of China for grant 51775041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 kb)

Supplementary file2 (PDF 177 kb)

Appendix

Appendix

The nonlinear equations of the motion in Fig. 1 are listed below:

$$ m_{D} \ddot{x} + m_{L} W_{1} + F_{z} \sin \theta = 0, $$
(A1)
$$ m_{D} \ddot{z} + m_{L} W_{2} - m_{L} g - m_{D} g + F_{z} \cos \theta = 0, $$
(A2)
$$ \begin{aligned} I_{yy} \ddot{\theta } & + \frac{{(\ddot{\theta } + \ddot{\delta })m_{L} l_{L}^{2} }}{12} - M_{\theta } - m_{L} g\left[ {0.5l_{L} \cos (\theta + \delta ) - l_{A} \cos \theta - l_{S} \sin (\theta + \beta_{2} )} \right] \\ & + m_{L} W_{1} \left[ \begin{array}{l} - l_{A} \sin \theta \hfill \\ + l_{S} \cos (\theta + \beta_{2} ) \hfill \\ + 0.5l_{L} \sin (\theta + \delta ) \hfill \\ \end{array} \right] + m_{L} W_{2} \left[ \begin{array}{l} - l_{A} \cos \theta \hfill \\ - l_{S} \sin (\theta + \beta_{2} ) \hfill \\ + 0.5l_{L} \cos (\theta + \delta ) \hfill \\ \end{array} \right] = 0, \\ \end{aligned} $$
(A3)
$$ \begin{aligned} & m_{L} gl_{S} \sin (\theta + \beta_{2} )\frac{{\cos (\beta_{1} - \delta )}}{{\cos (\beta_{2} - \delta )}} + 0.5m_{L} gl_{L} \cos (\theta + \delta )\frac{{l_{S} \sin (\beta_{1} - \beta_{2} )}}{{l_{L} \cos (\beta_{2} - \delta )}} \\ & \quad + \frac{{\cos (\beta_{1} - \delta )}}{{\cos (\beta_{2} - \delta )}}\left[ {l_{S} \cos (\theta + \beta_{2} )m_{L} W_{1} - l_{S} \sin (\theta + \beta_{2} )m_{L} W_{2} } \right] \\ & \quad - \frac{{l_{S} \sin (\beta_{1} - \beta_{2} )}}{{l_{L} \cos (\beta_{2} - \delta )}}\left[ \begin{array}{l} \frac{1}{12}(\ddot{\theta } + \ddot{\delta })m_{L} l_{L}^{2} + 0.5l_{L} \sin (\theta + \delta )m_{L} W_{1} \hfill \\ + 0.5l_{L} \cos (\theta + \delta )m_{L} W_{2} \hfill \\ \end{array} \right] = 0. \\ \end{aligned} $$
(A4)

The acceleration constraints of the four-bar linkage are listed below:

$$ \ddot{\beta }_{2} = \tan (\beta_{2} - \delta )\dot{\beta }_{2}^{2} - \frac{{l_{L} \dot{\delta }^{2} }}{{l_{S} \cos (\beta_{2} - \delta )}} - \frac{{\left[ {\sin (\beta_{1} - \delta )\dot{\beta }_{1}^{2} - \cos (\beta_{1} - \delta )\ddot{\beta }_{1} } \right]}}{{\cos (\beta_{2} - \delta )}}, $$
(A5)
$$ \ddot{\delta } = \frac{{l_{S} \left[ {\dot{\beta }_{2}^{2} - \cos (\beta_{1} - \beta_{2} )\dot{\beta }_{1}^{2} - \sin (\beta_{1} - \beta_{2} )\ddot{\beta }_{1} } \right]}}{{l_{L} \cos (\beta_{2} - \delta )}} - \tan (\beta_{2} - \delta )\dot{\delta }^{2} . $$
(A6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Huang, J. Planar dual-hoist dynamics of quadcopters carrying slender loads. Nonlinear Dyn 106, 3101–3115 (2021). https://doi.org/10.1007/s11071-021-06977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06977-0

Keywords

Navigation