Skip to main content
Log in

New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The perturbed mK(3,1) equation is restudied to further explore the dynamics of solitary wave solutions by combining the geometric singular perturbation theorem and bifurcation analysis in this paper. Besides the solitary waves presented in literature [1,2,3], we show that this equation possesses a family of solitary waves which decay to some constants determined by their wave speeds and a parameter. It is shown that a portion of the solitary wave solutions to the mK(3,1) equation will persist under small perturbations and the wave speed selection principle is presented as well. In addition to the solitary waves, each of which has only one crest or trough and approximates to a solitary wave of the unperturbed equation as the perturbation parameter tends to zero, we theoretically prove the existence of a new type of solitary waves with coexisting crest and trough. The numerical simulations are carried out, and the results are in complete agreement with our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ. 261, 5324–5349 (2016)

    Article  MathSciNet  Google Scholar 

  2. Zhu, K., Wu, Y., Shen, J., et al.: New solitary wave solutions in a perturbed generalized BBM equation. Nonlinear Dyn. 97, 2413–2423 (2019)

    Article  Google Scholar 

  3. Yuan, P.: The persistence of Traveling wave solutions of a singularly perturbed nonlinear wave equation, https://doi.org/10.27786/d.cnki.gzjlg.2019.000329(2019) (in Chinese)

  4. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Phi. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  5. Benjamin, R.T., Bona, J.L., Mahony, J.J.: Model equations for long waves in non-linear dispersive systems. Philos. Trans. R Soc. Lond. 272, 47–78 (1972)

    Article  Google Scholar 

  6. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70(5), 564–567 (1993)

    Article  Google Scholar 

  7. Biswas, A.: 1-soliton solution of the Km, n equation with generalized evolution. Phys. Lett. A 372(25), 4601–4602 (2008)

    Article  MathSciNet  Google Scholar 

  8. Wazwaz, A.: Exact solution with compact and non-compact structures for the one-dimensional generalized Benjamin-Bona-Mahony equation. Commun. Nonlinear Sci. Numer. Simul. 10, 855–867 (2005)

    Article  MathSciNet  Google Scholar 

  9. Yan, Z.: Modified nonlinearly dispersive mK(m,n,k) equations: I. New compacton solutions and solitary pattern solutions, Comput. Phys. Commun. 152, 25-33 (2003)

  10. Guckenheimer, J., Holmes, P.: Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  11. Li, J.: Singular Traveling Wave Equations: Bifurcation and Exact Solutions. Science Press, Beijing (2013)

    Google Scholar 

  12. Yan, W., Liu, Z., Liang, Y.: Existence of solitary waves and periodic waves to a perturbed generalized KdV equation. Math. Model. Anal. 19, 537–555 (2014)

    Article  MathSciNet  Google Scholar 

  13. Zhang, L., Han, M., Zhang, M., Khalique, C.M.: A new type of solitary wave solution of the mKdV equation under singular perturbations. Int. J. Bifurcat. Chaos. 30, 1–14 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Fan, X., Tian, L.: The existence of solitary waves of singularly perturbed mKdV-KS equation. Chaos Solit. Fract. 26, 1111–1118 (2005)

    Article  MathSciNet  Google Scholar 

  15. Derks, G., Gils, S.: On the uniqueness of traveling waves in perturbed Korteveg-de Vries equations. Japan J. Indust. Appl. Math. 10, 413–430 (1993)

    Article  MathSciNet  Google Scholar 

  16. Ogawa, T.: Traveling wave solutions to a perturbed Korteweg-de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)

    Article  MathSciNet  Google Scholar 

  17. Guo, L., Zhao, Y.: Existence of periodic waves for a perturbed quintic BBM equation. Discrete Cont. Dyn. Sys. 40, 4689–4703 (2020)

    Article  MathSciNet  Google Scholar 

  18. Zhuang, K., Du, Z., Lin, X.: Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method. Nonlinear Dyn. 80, 629–635 (2015)

    Article  MathSciNet  Google Scholar 

  19. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  Google Scholar 

  20. Tang, Y., Xu, W., Shen, J., Gao, L.: Persistence of solitary wave solutions of singularly perturbed Gardner equation. Chaos Solit. Fract. 37, 532–538 (2008)

    Article  MathSciNet  Google Scholar 

  21. Xu, Y., Du, Z., Wei, L.: Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized Burgers-KdV equation. Nonlinear Dyn. 83, 65–73 (2016)

    Article  MathSciNet  Google Scholar 

  22. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct. Anal. 275(4), 988–1007 (2018)

    Article  MathSciNet  Google Scholar 

  23. Du, Z., Qi, Q.: The dynamics of traveling waves for a nonlinear Belousov-Zhabotinskii system. J. Differ. Equ. 269, 7214–7230 (2020)

    Article  MathSciNet  Google Scholar 

  24. Zhao, Z.: Solitary waves of the generalized KdV equation with distributed delays. J. Math. Anal. Appl. 344, 32–41 (2008)

    Article  MathSciNet  Google Scholar 

  25. Zhao, Z., Xu, Y.: Solitary waves for Korteweg-deVries equation with small delay. J. Math. Anal. Appl. 368, 43–53 (2010)

    Article  MathSciNet  Google Scholar 

  26. Mansour, M.B.A.: Traveling waves for a dissipative modified KdV equation. J. Egypt Math. Soc. 20, 134–138 (2012)

    Article  MathSciNet  Google Scholar 

  27. Mansour, M.B.A.: Traveling wave solutions for a singularly perturbed Burgers-KdV equation. Pramana J. Phys. 73, 799–806 (2009)

    Article  Google Scholar 

  28. Luo, D., Han, M., Zhu, D.: Uniqueness of limit cycles bifurcating from a singular closed orbit (I) (Chinese). Acta Math. Sinica. 35(3), 407–417 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Han, M.: Bifurcation theory of limit cycles. Science press, Beijing (2013)

    Google Scholar 

  30. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations. Springer, New York, Dynamical Systems and Bifurcations of Vector Fields (2002)

Download references

Acknowledgements

This work is partially supported by the National Nature Science Foundation of China No. 12011530062, No.12172199 and No. 11672270. E. Shchepakina and V. Sobolev were funded by RFBR and NSFC according to the research project No. 20-51-53008. We would like to thank the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Ethics declarations

Conflict of interest

All authors have declared that no conflict of interest exists.

Declaration

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculation of integrals

Appendix: Calculation of integrals

Recall that

$$\begin{aligned} I_{\pm }(y_0)= & {} \oint _{L_0^{\pm }(y_0)}z^2d\tau , \\ J_{\pm }(y_0)= & {} \oint _{L_0^{\pm }(y_0)}\big (3y^2-2y\big )z^2d\tau , \end{aligned}$$

and the homoclinic orbits \(L_0^{+}(y_0)\cup L_0^{-}(y_0)\) are determined by

$$\begin{aligned} \frac{1}{2}z^2+\frac{1}{4}y^4-\frac{1}{3}y^3+(y_0^2-y_0^3)y=\frac{2}{3}y_0^3-\frac{3}{4}y_0^4, \end{aligned}$$

that is

$$\begin{aligned} z_{\pm }\!=\!\pm \sqrt{-\frac{1}{2}y^4+\frac{2}{3}y^3-2(y_0^2-y_0^3)y+\frac{4}{3}y_0^3-\frac{3}{2}y_0^4}\nonumber \!\!\!\!\!\\ \end{aligned}$$
(37)

with \(y_0<y\le m_+\) for the right homoclinic loop \(L_0^{+}(y_0)\) and with \(m_-\le y<y_0\) for the left one \(L_0^{-}(y_0)\). They are both oriented by system (16).

By noticing that \(\frac{dy}{d\tau }=z\) and the orbits \(L_0^{\pm }(y_0)\) are symmetry with respect to the \(y-\)axis, one has

$$\begin{aligned}&\!\!\!I_+(y_0)\nonumber \\&\!\!\!\quad =2\int _{y_0}^{m_+} \sqrt{-\frac{1}{2}y^4+\frac{2}{3}y^3-2(y_0^2-y_0^3)y+\frac{4}{3}y_0^3-\frac{3}{2}y_0^4}\ dy.\nonumber \\ \end{aligned}$$
(38)

Direct calculation of integral yields

$$\begin{aligned}&I_+(y_0)\nonumber \\&\quad =2\sqrt{2}\bigg (y_0^3-y_0^2+\frac{2}{27}\bigg )\nonumber \\&\bigg (\frac{\pi }{2}-arcsin\frac{\sqrt{2}(3y_0-1)}{\sqrt{-9y_0^2+6y_0+2}}\bigg )+\frac{4}{9}\sqrt{y_0(2-3y_0)}.\nonumber \!\!\!\!\!\!\!\\ \end{aligned}$$
(39)

Similarly, we have

$$\begin{aligned} J_+(y_0)=&2\int _{y_0}^{m_+} \big (3y^2-2y\big ) \nonumber \\&\sqrt{-\frac{1}{2}y^4+\frac{2}{3}y^3-2(y_0^2-y_0^3)y+\frac{4}{3}y_0^3-\frac{3}{2}y_0^4}dy\nonumber \\ =&\frac{4\sqrt{2}}{3}\bigg (y_0^3-y_0^2+\frac{2}{27}\bigg )\nonumber \\&\bigg (\frac{\pi }{2}-arcsin\frac{\sqrt{2}(3y_0-1)}{\sqrt{-9y_0^2+6y_0+2}}\bigg )\nonumber \\&+2\bigg (\frac{24}{5}y_0^3-\frac{18}{5}y_0^4-\frac{8}{5}y_0^2+\frac{4}{27} \bigg )\nonumber \\&\sqrt{y_0(2-3y_0)}, \end{aligned}$$
(40)
$$\begin{aligned} I_-(y_0)=&2\int _{m_-}^{y_0} \sqrt{-\frac{1}{2}y^4+\frac{2}{3}y^3-2(y_0^2-y_0^3)y+\frac{4}{3}y_0^3-\frac{3}{2}y_0^4}dy\nonumber \\ =&-2\sqrt{2}\bigg (y_0^3-y_0^2+\frac{2}{27}\bigg )\nonumber \\&\bigg (\frac{\pi }{2}+arcsin\frac{\sqrt{2}(3y_0-1)}{\sqrt{-9y_0^2+6y_0+2}}\bigg )\nonumber \\&+\frac{4}{9}\sqrt{y_0(2-3y_0)}, \end{aligned}$$
(41)

and

$$\begin{aligned} J_-(y_0)=&\,\,2\int _{m_-}^{y_0} \big (3y^2-2y\big ) \nonumber \\&\sqrt{-\frac{1}{2}y^4+\frac{2}{3}y^3-2(y_0^2-y_0^3)y+\frac{4}{3}y_0^3-\frac{3}{2}y_0^4}dy\nonumber \\ =&-\frac{4\sqrt{2}}{3}\bigg (y_0^3-y_0^2+\frac{2}{27}\bigg )\nonumber \\&\bigg (\frac{\pi }{2}+arcsin\frac{\sqrt{2}(3y_0-1)}{\sqrt{-9y_0^2+6y_0+2}}\bigg ) \nonumber \\&+2\bigg (\frac{24}{5}y_0^3-\frac{18}{5}y_0^4-\frac{8}{5}y_0^2+\frac{4}{27} \bigg )\nonumber \\&\sqrt{y_0(2-3y_0)}\ . \end{aligned}$$
(42)

It follows that

$$\begin{aligned} {I_+}{J_-}-{I_-}{J_+}= & {} \frac{8\sqrt{2}}{135}\pi (3y_0 - 1)\nonumber \\&(9y_0^2 - 6y_0 - 2)y_0^\frac{5}{2}(2 - 3y_0)^\frac{5}{2} \end{aligned}$$
(43)

Clearly, for \(y_0\in (0, \frac{2}{3})\), \({I_+}{J_-}-{I_-}{J_+}=0\) if and only if \(y_0=\frac{1}{3}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, J., Shchepakina, E. et al. New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation. Nonlinear Dyn 106, 3479–3493 (2021). https://doi.org/10.1007/s11071-021-06975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06975-2

Keywords

Navigation