Skip to main content
Log in

Transmission of pacemaker signal in a small world neuronal networks: temperature effects

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The environmental temperature plays a crucial role in determining the behavior of any dynamical system. In particular, living organisms are characterized by a specific value of temperature, which ensures their normal functioning. In this paper, the effect of temperature on signal transmission of a pacemaker neuron is investigated using a small-world neuronal networks in which the pacemaker is stimulated by a square-wave signal. We observe that signal propagation may be significantly enhanced at intermediate temperatures, i.e., temperature favors the propagation of the rhythm of the pacemaker to the whole neuronal network. Furthermore, a rich dynamics is observed, including spiking and bursting activities, as well as full and remote synchronization. We also find that signal propagation crucially depends on the strength of the coupling. Our findings provide new insights on the system dynamics, and improve our understanding of the optimal temperature observed in experiments involving living biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Marder, E.: Moving rhythms. Nature 410, 755 (2001)

    Article  Google Scholar 

  2. Koshiya, N., Smith, J.C.: Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363 (1999)

    Article  Google Scholar 

  3. Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001)

    Article  Google Scholar 

  4. Rabbah, P., Nadim, F.: Distinct synaptic dynamics of heterogeneous pacemaker neurons in an oscillatory network. J. Neurophysiol. 97, 2239–2253 (2007)

    Article  Google Scholar 

  5. Wang, X.J.: Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J. Neurophysiol. 87, 889–900 (2002)

    Article  Google Scholar 

  6. Gu, H., Ren, W., Lu, Q., Wu, S., Yang, M., Chen, W.: Integer multiple spiking in neuronal pacemakers without external periodic stimulation. Phys. Lett. A 285, 63–68 (2001)

    Article  MathSciNet  Google Scholar 

  7. Gu, H.G.: Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Chaos 23, 023126 (2013)

    Article  Google Scholar 

  8. Eisen, J.S., Marder, E.: Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons. J. Neurophysiol. 48, 1392–1415 (1982)

    Article  Google Scholar 

  9. Nagai, Y., Gonzalez, H., Shrier, A., Glass, L.: Paroxysmal starting and stopping of circulating waves in excitable media. Phys. Rev. Lett. 84, 4248 (2000)

    Article  Google Scholar 

  10. Perc, M., Gosak, M.: Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New J. Phys. 10, 053008 (2008)

    Article  Google Scholar 

  11. Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76, 066203 (2007)

    Article  Google Scholar 

  12. Kori, H., Mikhailov, A.S.: Entrainment of randomly coupled oscillator networks by a pacemaker. Phys. Rev. Lett. 93, 254101 (2004)

    Article  Google Scholar 

  13. Yao, C.G., Ma, J., Zhiwei He, Z.W., Nakano, T., Qian, Y., Shuai, J.W.: Inhibitory-autapse-enhanced signal transmission in neural networks. Nonliear Dyn. 97, 1425–1437 (2019)

    Article  Google Scholar 

  14. Qin, H., Ma, J., Wang, C., Wu, Y.: Autapse-induced spiral wave in network of neurons under noise. PLoS One 9, e100849 (2014)

    Article  Google Scholar 

  15. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  17. Jia, Y.B., Gu, H.G., Li, Y.Y., Ding, X.L.: Inhibitory autapses enhance coherence resonance of a neuronal network. Commun. Nonlinear Sci. Numer. Simul. 95, 105643 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guan, L., Gu, H.G., Zhao, Z.G.: Dynamics of subthreshold and suprathreshold resonance modulated by hyperpolarization-activated cation current in a bursting neuron. Nonlinear Dyn. 104, 577–601 (2021)

    Article  Google Scholar 

  19. Xu, Y., Jia, Y., Wang, H.W., Liu, Y., Wang, P., Zhao, Y.J.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95, 3237–3247 (2019)

    Article  MATH  Google Scholar 

  20. He, Z.W., Yao, C.G.: The effect of oxygen concentration on the coupled neurons: rich spiking patterns and synchronization. Sci. China Technol. Sci. 63, 2339–2348 (2020)

    Article  Google Scholar 

  21. Yao, Z., Wang, C., Zhou, P., Ma, J.: Regulating synchronous patterns in neurons and networks via field coupling. Commun. Nonlinear Sci. Numer. Simul. 95, 105583 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lago-Fernandez, L.F., Huerta, R., Corbacho, F., Siguenza, J.A.: Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett. 84, 2758 (2000)

    Article  Google Scholar 

  23. White, J.G., Southgate, E., Thompson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

    Article  Google Scholar 

  24. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  25. Liu, Y., Xu, Y., Ma, J.: Synchronization and spatial patterns in a light-dependent neural network. Commun. Nonlinear Sci. Numer. Simul. 89, 105297 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, X.J., Perc, M., Lu, Q.S., Kurths, J.: Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network. Chaos 20, 033116 (2010)

    Article  Google Scholar 

  27. Yao, C.G., Zhan, M., Shuai, J.W., Ma, J., Kurths, J.: Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. Chaos 27, 126702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tang, J., Zhang, J., Ma, J., Luo, J.M.: Noise and delay sustained chimera state in small world neuronal network. Sci. China Technol. Sci. 62, 1134–1140 (2019)

    Article  Google Scholar 

  29. Xu, Y., Jia, Y., Ge, M.Y., Lu, L.L., Yang, L.J., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin-Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2017)

    Article  Google Scholar 

  30. Ozer, M., Uzuntarla, M., Kayikcioglu, T., Graham, L.J.: Collective temporal coherence for subthreshold signal encoding on a stochastic small-world Hodgkin-Huxley neuronal network. Phys. Lett. A 372, 6498–6503 (2008)

    Article  MATH  Google Scholar 

  31. Jun, M., Yang, L.J., Wang, Y., Zhang, C.R.: Spiral wave in small-world networks of Hodgkin-Huxley neurons. Commun. Theor. Phys. 54, 583–588 (2010)

    Article  Google Scholar 

  32. Lv, M., Ma, J., Yao, Y.G., Alzahrani, F.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62, 448–457 (2019)

    Article  Google Scholar 

  33. Qian, Y., Zhang, C., Wei, Z.G., Liu, F., Yao, C.G., Zheng, Z.G.: The optimal oscillation mode in excitable small-world networks. Europhys. Lett. 131, 38002 (2020)

    Article  Google Scholar 

  34. Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. J. Neurophysiol. 92, 1116–1132 (2004)

    Article  Google Scholar 

  35. Wu, X.X., Shuai, J.W.: Multistability in a neuron model with extracellular potassium dynamics. Phys. Rev. E 85, 061911 (2012)

    Article  Google Scholar 

  36. Wu, X.X., Shuai, J.W.: Effects of extracellular potassium diffusion on electrically coupled neuron networks. Phys. Rev. E 91, 022701 (2015)

    Article  Google Scholar 

  37. Wu, X.X., Yao, C.G., Shuai, J.W.: Enhanced multiple vibrational resonances by Na+ and K+ dynamics in a neuron model. Sci. Rep. 5, 7684 (2015)

    Article  Google Scholar 

  38. Shuai, J.W., Sheng, R., Jung, P.: Entropically modified spiking ability and periodicity in clustered channels. Phys. Rev. E 81, 051913 (2010)

    Article  Google Scholar 

  39. Shuai, J.W., Bikson, M., Hahn, P.J., Lian, J., Durand, D.M.: Ionic mechanisms underlying spontaneous CA1 neuronal firing in Ca\(^{2+}\)-free solution. Biophys. J . 84, 2099–2111 (2003)

    Article  Google Scholar 

  40. Roper, S.N., Obenaus, A., Dudek, F.E.: Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus. Ann. Neurol. 31, 81–85 (1992)

    Article  Google Scholar 

  41. Snow, R.W., Dudek, F.E.: Electrical fields directly contribute to action potential synchronization during convulsant-induced epileptiform bursts. Brain Res. 323, 114–118 (1984)

    Article  Google Scholar 

  42. Wei, Y., Ullah, G., Schiff, S.J.: Unification of neuronal spikes, seizures, and spreading depression. J. Neurosci. 34, 11733–11743 (2014)

    Article  Google Scholar 

  43. Ullah, G., Wei, Y., Dahlem, M.A., Wechselberger, M., Schiff, S.J.: The role of cell volume in the dynamics of seizure, spreading depression, and anoxic depolarization. PLoS Comput. Biol. 14, 1004414 (2015)

    Article  Google Scholar 

  44. Yao, C.G., He, Z.W., Nakano, T., Shuai, J.W.: Spiking patterns of a neuron model to stimulus: Rich dynamics and oxygens role. Chaos 28, 083112 (2018)

    Article  MathSciNet  Google Scholar 

  45. Somero, G.N.: Temperature adaptation of enzymes: biological optimization through structure-function compromises. Ann. Rev. Ecol. Syst. 9, 1–29 (1978)

    Article  Google Scholar 

  46. Temperature effects on biological systems: rowbury. Introduction. Sci. Prog. 86, 1–8 (2003)

  47. Schipper, L.A.: On the temperature dependence of enzymecatalyzed rates. Biochemistry 55, 1681–1688 (2016)

    Article  Google Scholar 

  48. Song, X.L., Wang, H.T., Chen, Y., Lai, Y.C.: Emergence of an optimal temperature in action-potential propagation through myelinated axons. Phys. Rev. E 100, 032416 (2019)

    Article  Google Scholar 

  49. Fu, X., Yu, Y.G.: Reliable and efficient processing of sensory information at body temperature by rodent cortical neurons. Nonlinear Dyn. 98, 215–231 (2019)

    Article  Google Scholar 

  50. Yu, Y.G., Shu, Y.S., McCormick, D.A.: Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J. Neurosci. 28, 7260–7272 (2008)

    Article  Google Scholar 

  51. Yu, Y.G., Hill, A.P., McCormick, D.A.: Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8, 1002456 (2012)

    Article  Google Scholar 

  52. Tai, C., Wang, J., Roppolo, J.R., Groat, W.C.: Relationship between temperature and stimulation frequency in conduction block of amphibian myelinated axon. J. Comput. Neurosci. 26, 331–338 (2008)

    Article  Google Scholar 

  53. Ding, Q.M., Jia, Y.: Effects of temperature and ion channel blocks on propagation of action potential in myelinated axons. Chaos 31, 053102 (2021)

    Article  MathSciNet  Google Scholar 

  54. Yao, C.G., He, Z.W.: Anormal diffusion enhancement of resonant responses for coupled oscillator networks to weak signals. Chaos 30, 083120 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Peterson, M.E., Daniel, R.M., Danson, M.J., Eisenthal, R.: The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem. J. 402, 331–337 (2007)

    Article  Google Scholar 

  56. Dell, A.I., Pawar, S., Savage, V.M.: Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A. 108, 10591–10596 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China under Grant Nos. 11675112 and 11805091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggui Yao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Yao, C., Liu, S. et al. Transmission of pacemaker signal in a small world neuronal networks: temperature effects. Nonlinear Dyn 106, 2547–2557 (2021). https://doi.org/10.1007/s11071-021-06907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06907-0

Keywords

Navigation