Skip to main content
Log in

Approaching a large deviation theory for complex systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The standard large deviation theory (LDT) is mathematically illustrated by the Boltzmann–Gibbs factor which describes the thermal equilibrium of short-range-interacting many-body Hamiltonian systems, the velocity distribution of which is Maxwellian. It is generically applicable to systems satisfying the central limit theorem (CLT). When we focus instead on stationary states of typical complex systems (e.g., classical long-range-interacting many-body Hamiltonian systems, such as self-gravitating ones), the CLT, and possibly also the LDT, need to be generalized. Specifically, when the \(N\rightarrow \infty \) attractor (N being the number of degrees of freedom) in the space of distributions is a Q-Gaussian (a nonadditive q-entropy-based generalization of the standard Gaussian case, which is recovered for \(Q=1\)) related to a Q-generalized CLT, we expect the LDT probability distribution to asymptotically approach a power law. Consistently with available strong numerical indications for probabilistic models, this behavior possibly is that associated with a q-exponential (defined as \(e_q^x\equiv \left[ 1+(1-q)x\right] ^{1/(1-q)}\), which is the generalization of the standard exponential form, straightforwardly recovered for \(q=1\)); q and Q are expected to be simply connected, including the particular case \(q=Q=1\). The argument of such q-exponential would be expected to be proportional to N, analogously to the thermodynamic entropy of many-body Hamiltonian systems. We provide here numerical evidence supporting the asymptotic power law by analyzing the standard map, the coherent noise model for biological extinctions and earthquakes, the Ehrenfest dog-flea model, and the random walk avalanches. For the particular case of the strongly chaotic standard map, we numerically verify (below \(5\%\) error bar) the validity of the asymptotic exponential behavior predicted by the usual LDT once the initial transient elapses typically beyond \(N \simeq 3 \times 10^6\). Analogously, for the standard map with vanishing Lyapunov exponent, we provide numerical evidence (below the same error bar) for the asymptotic validity of the q-exponential behavior once the initial transient elapses typically beyond \(N \simeq 2 \times 10^5\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Reif, F.: Fundamentals of Statistical and Thermal Physics. Waveland Press, Long Grove (2008)

    Google Scholar 

  2. Pathria, R.K., Beale, P.D.: Statistical Mechanics. Academic Press, New York (2011)

    MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  4. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  5. Ellis, R.S.: Entropy, Large Deviations and Statistical Mechanics. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  6. den Hollander, F.: Large Deviations. American Mathematical Society, USA (2008)

    MATH  Google Scholar 

  7. Touchette, H.: Phys. Rep. 478, 1–69 (2009)

    Article  MathSciNet  Google Scholar 

  8. Tsallis, C.: J. Stat. Phys. 52, 479–487 (1988)

    Article  Google Scholar 

  9. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World. Springer, New York (2009)

    MATH  Google Scholar 

  10. Jizba, P., Korbel, J.: Maximum entropy principle in statistical inference: case for non-Shannonian entropies. Phys. Rev. Lett. 122, 120601 (2019)

    Article  Google Scholar 

  11. Taruya, A., Sakagami, M.: Phys. Rev. Lett. 90, 181101 (2003)

    Article  Google Scholar 

  12. Campa, A., Chavanis, P.H., Giansanti, A., Morelli, G.: Phys. Rev. E 78, 040102 (2008)

    Article  Google Scholar 

  13. Carati, A., Galgani, L., Gangemi, F., Gangemi, R.: Physica A 532, 121911 (2019)

    Article  Google Scholar 

  14. Carati, A., Galgani, L., Gangemi, F., Gangemi, R.: Eur. Phys. J. Special Topics 229, 743 (2020)

    Article  Google Scholar 

  15. Douglas, P., Bergamini, S., Renzoni, F.: Phys. Rev. Lett. 96, 110601 (2006)

    Article  Google Scholar 

  16. Lutz, E., Renzoni, F.: Nature Physics 9, 615–619 (2013)

    Article  Google Scholar 

  17. Combe, G., Richefeu, V., Stasiak, M., Atman, A.P.F.: Phys. Rev. Lett. 115, 238301 (2015)

    Article  Google Scholar 

  18. Wong, C.Y., Wilk, G.: Phys. Rev. D 87, 114007 (2013)

    Article  Google Scholar 

  19. Andrade, J.S., Jr., da Silva, G.F.T., Moreira, A.A., Nobre, F.D., Curado, E.M.F.: Phys. Rev. Lett. 105, 260601 (2010)

    Article  Google Scholar 

  20. Yalcin, G.C., Beck, C.: Scientific Reports 8, 1764 (2018)

    Article  Google Scholar 

  21. de Freitas, D.B., Eufrasio, R.T., Nepomuceno, M.M.F., da Silva, J.R.P.: EPL 125, 69002 (2019)

    Article  Google Scholar 

  22. Borland, L.: Phys. Rev. Lett. 89, 098701 (2002)

    Article  Google Scholar 

  23. de Oliveira, R.M., Brito, S., da Silva, L.R., Tsallis, C.: Sci. Rep. 11, 1130 (2021)

    Article  Google Scholar 

  24. Anteneodo, C., Tsallis, C.: Phys. Rev. Lett. 80, 5313 (1998)

    Article  Google Scholar 

  25. Cirto, L.J.L., Rodriguez, A., Nobre, F.D., Tsallis, C.: EPL 123, 30003 (2018)

    Article  Google Scholar 

  26. Rodriguez, A., Nobre, F.D., Tsallis, C.: Entropy 21, 31 (2019)

    Article  Google Scholar 

  27. Christodoulidi, H., Tsallis, C., Bountis, T.: EPL 108, 40006 (2014)

    Article  Google Scholar 

  28. Bagchi, D., Tsallis, C.: Phys. Rev. E 93, 062213 (2016)

    Article  MathSciNet  Google Scholar 

  29. Umarov, S., Tsallis, C., Steinberg, S.: Milan J. Math. 76, 307 (2008)

    Article  MathSciNet  Google Scholar 

  30. Umarov, S., Tsallis, C., Gell-Mann, M., Steinberg, S.: J. Math. Phys. 51, 033502 (2010)

    Article  MathSciNet  Google Scholar 

  31. Hahn, M.G., Jiang, X.X., Umarov, S.: J. Phys. A 43, 165208 (2010)

    Article  MathSciNet  Google Scholar 

  32. Campa, A., Dauxois, T., Fanelli, D., Ruffo, S.: Physics of Long-Range Interacting Systems. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  33. Tsallis, C., Cirto, L.J.L.: Eur. Phys. J. C 73, 2487 (2013)

    Article  Google Scholar 

  34. Ruiz, G., Tsallis, C.: Phys. Lett. A 376, 2451 (2012)

    Article  Google Scholar 

  35. Touchette, H.: Phys. Lett. A 377, 436 (2013)

    Article  Google Scholar 

  36. Ruiz, G., Tsallis, C.: Phys. Lett. A 377, 49 (2013)

    Article  Google Scholar 

  37. Giardina, C., Kurchan, J., Peliti, L.: Phys. Rev. Lett. 96, 120603 (2006)

    Article  Google Scholar 

  38. Lecomte, V., Tailleur, J.: J. Stat. Mech. , P03004 (2007)

  39. Garrahan, J.P., et al.: J. Phys. A 42, 075007 (2009)

    Article  MathSciNet  Google Scholar 

  40. Giardina, C., Kurchan, J., Lecomte, V., Peliti, L.: J. Stat. Phys. 145, 787 (2011)

    Article  MathSciNet  Google Scholar 

  41. Nemoto, T., Guevara Hidalgo, E., Lecomte, V.: Phys. Rev. E 95, 012102 (2017)

    Article  MathSciNet  Google Scholar 

  42. Guevara Hidalgo, E., Nemoto, T., Lecomte, V.: Phys. Rev. E 95, 062134 (2017)

    Article  Google Scholar 

  43. Nemoto, T., Bouchet, F., Jack, R., Lecomte, V.: Phys. Rev. E 93, 062123 (2016)

    Article  MathSciNet  Google Scholar 

  44. Nemoto, T., Jack, R., Lecomte, V.: Phys. Rev. Lett. 118, 115702 (2017)

    Article  Google Scholar 

  45. Chirikov, B.V.: Phys. Rep. 52, 263 (1979)

    Article  Google Scholar 

  46. Zaslavsky, G.M., Sagdeev, R.-Z., Usikov, D.A., Chernikov, A.A.: Weak Chaos and Quasi-Regular Patterns. Cambridge Nonlinear Science Series (1991)

  47. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  48. Izraelev, F.M.: Physica D 1, 243 (1980)

    Article  MathSciNet  Google Scholar 

  49. Petrowsky, T.Y.: Phys. Lett. A 117, 328 (1986)

    Article  Google Scholar 

  50. Benvenuto, F., et al.: Phys. Rev. Lett. 72, 1818 (1994)

    Article  Google Scholar 

  51. Greene, J.M., MacKay, R.S., Stark, J.: Physica D 21, 267 (1986)

    Article  MathSciNet  Google Scholar 

  52. Aubry, S., Abramovici, G.: Physica D 43, 199 (1990)

    Article  MathSciNet  Google Scholar 

  53. Srivastava, S.C.L., Lakshminarayan, A.: Chaos Solitons Fractals 74, 67 (2015)

    Article  MathSciNet  Google Scholar 

  54. Tomsovic, S., Lakshminarayan, A.: Phys. Rev. E 76, 036207 (2007)

    Article  MathSciNet  Google Scholar 

  55. Duarte, P.: Annales de l’ Institut Henri Poincare—Analyse non lineaire 11, 359 (1994)

  56. Mackey, M.C., Tyran-Kaminska, M.: Phys. Rep. 422, 167 (2006)

    Article  MathSciNet  Google Scholar 

  57. Tirnakli, U., Borges, E.P.: Sci. Rep. 6, 23644 (2016)

    Article  Google Scholar 

  58. Tsallis, C., Mendes, R.S., Plastino, A.R.: Physica A 261, 534 (1998)

    Article  Google Scholar 

  59. Ferri, G.L., Martinez, S., Plastino, A.: J. Stat. Mech. Theory Exp. P04009, (2005)

  60. Thistleton, W., Marsh, J.A., Nelson, K., Tsallis, C.: IEEE Trans. Inf. Theory 53, 4805–4810 (2007)

    Article  Google Scholar 

  61. Abe, S.: Eur. Phys. Lett. 90, 50004 (2010)

    Article  Google Scholar 

  62. Abe, S.: Europhys. Lett. 92, 40006 (2010)

    Article  Google Scholar 

  63. Andresen, B.: Europhys. Lett. 92, 40005 (2010)

    Article  Google Scholar 

  64. Plastino, A., Rocca, M.C.: Physica A 488, 56–59 (2017)

    Article  MathSciNet  Google Scholar 

  65. Bountis, A., Veerman, J.J.P., Vivaldi, F.: Phys. Lett. A 384, 126659 (2020)

    Article  MathSciNet  Google Scholar 

  66. Newman, M.E.J.: Proc. R. Soc. London, Ser. B 263, 1605 (1996)

  67. Newman, M.E.J., Sneppen, K.: Phys. Rev. E 54, 6226 (1996)

    Article  Google Scholar 

  68. Celikoglu, A., Tirnakli, U., Queiros, S.M.D.: Phys. Rev. E 82, 021124 (2010)

    Article  Google Scholar 

  69. Christopoulos, S.R.G., Sarlis, N.V.: Physica A 407, 216–225 (2014)

    Article  MathSciNet  Google Scholar 

  70. Christopoulos, S.R.G., Sarlis, N.V.: Complexity 6853892 (2017)

  71. Ehrenfest, P., Ehrenfest, T.: Phys. Z. 8, 311 (1907)

    Google Scholar 

  72. Bhattacharya, R.N., Waymire, E.C.: Stochastic Processes with Applications. Wiley, New York (1990)

    MATH  Google Scholar 

  73. Bakar, B., Tirnakli, U.: Phys. Rev. E 79, 040103(R) (2009)

    Article  Google Scholar 

  74. Stapleton, M.A., Christensen, K.: J. Phys. A 39, 9107 (2006)

    Article  MathSciNet  Google Scholar 

  75. Tirnakli, U.: Unpublished

Download references

Acknowledgements

We are thankful to two anonymous Referees for useful remarks. Also, we acknowledge partial financial support by the Santa Fe Institute, New Mexico, and the Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany, for support of the SFI Micro Working Group “Large Deviations in Complex Systems” meeting. CT acknowledges as well CNPq and Faperj (Brazilian agencies). U.T. is a member of the Science Academy, Bilim Akademisi, Turkey and acknowledges partial support from TUBITAK (Turkish Agency) under the Research Project number 121F269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Tirnakli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirnakli, U., Tsallis, C. & Ay, N. Approaching a large deviation theory for complex systems. Nonlinear Dyn 106, 2537–2546 (2021). https://doi.org/10.1007/s11071-021-06904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06904-3

Keywords

Navigation