Skip to main content

From the Law of Large Numbers to Large Deviation Theory in Statistical Physics: An Introduction

  • Chapter
  • First Online:
Large Deviations in Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 885))

  • 2575 Accesses

Abstract

This contribution aims at introducing the topics of this book. We start with a brief historical excursion on the developments from the law of large numbers to the central limit theorem and large deviations theory. The same topics are then presented using the language of probability theory. Finally, some applications of large deviations theory in physics are briefly discussed through examples taken from statistical mechanics, dynamical and disordered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Who, by the way, already knew the expression for the mean square energy fluctuations.

  2. 2.

    We note that sometimes even in macroscopic systems (e.g. granular materials) the number of effective elementary constituents (e.g. the seeds) is not astonishingly large as in gases or liquids.

  3. 3.

    The most rudimentary form of the LLN seems to be credited to Cardano.

  4. 4.

    It is now well known, e.g. from KAM theorem and FPU simulations, that surely in some limit ergodicity fails, however it is fair to assume that the ergodic hypothesis holds for liquids or interacting gases.

  5. 5.

    Note that, at variance with the molecular dynamics, the Monte Carlo dynamics is somehow artificial (and not unique), therefore the dynamical properties, e.g. correlation functions, are not necessarily related to physical features.

  6. 6.

    It is enough to consider the variables t j  = lnx j and q j  = lna j , and then, noting that t N  = q 1 + q 2 + + q N , one can use the LLN and obtain the result.

  7. 7.

    For instance the discrete one-dimensional Schrödinger equation with a random potential can be written in terms of a product of 2 × 2 random matrices.

  8. 8.

    Such a result has been obtained by Boltzmann, who firstly noted the basic role of the entropy [14].

References

  1. J. Mehra, The Golden Age of Theoretical Physics (World Scientific, Singapore, 2001)

    Book  Google Scholar 

  2. I. Todhunter, History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace (BiblioBazaar, Charleston, 2009)

    Google Scholar 

  3. C. Cercignani, Ludwig Boltzmann: The Man Who Trusted Atoms (Oxford University Press, Oxford, 2007)

    Google Scholar 

  4. L. Graham, J.M. Kantor, Naming Infinity: A True Story of Religious Mysticism and Mathematical Creativity (Harvard University Press, Cambridge, 2009)

    Google Scholar 

  5. A. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)

    MATH  Google Scholar 

  6. P. Mazur, J. van der Linden, J. Math. Phys. 4, 271 (1963)

    Article  ADS  MATH  Google Scholar 

  7. H. Furstenberg, H. Kesten, Ann. Math. Stat. 31, 457 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. V.I. Oseledec, Trans. Moscow Math. Soc. 19, 197 (1968)

    MathSciNet  Google Scholar 

  9. H. Fischer, A History of the Central Limit Theorem (Springer, Berlin, 2010)

    Google Scholar 

  10. W. Hoeffding, H. Robbins, Duke Math. J. 15, 773 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  11. S.R.S. Varadhan, Large Deviations and Applications (Society for Industrial and Applied Mathematics, Philadelphia, 1984)

    Book  Google Scholar 

  12. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Grimmett, D. Stirzaker, Probability and Random Processes (Oxford University Press, Oxford, 2001)

    Google Scholar 

  14. R.S. Ellis, Physica D 133, 106 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. S. Redner, Am. J. Phys. 58, 267 (1990)

    Article  ADS  Google Scholar 

  16. J. Aitchison, J.A.C Brown, The Lognormal Distribution (Cambridge University Press, Cambridge, 1963)

    Google Scholar 

  17. S.A. Orszag, Phys. Fluids 13, 2211 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  19. E.A. Novikov and R.W. Stewart, Isv. Akad. Nauk. USSR Ser. Geophys. 3, 408 (1964)

    Google Scholar 

  20. R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, J. Phys. A 17, 3521 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)

    Article  ADS  MATH  Google Scholar 

  22. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

    Article  ADS  Google Scholar 

  23. D.J. Evans, D.J. Searles, Adv. Phys. 51, 1529 (2002)

    Article  ADS  Google Scholar 

  24. J. Kurchan, J. Phys. A.: Math. Gen. 31, 3719 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)

    Article  Google Scholar 

  27. F. Bonetto, G. Gallavotti, A. Giuliani, F. Zamponi, J. Stat. Phys. 123, 39 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. A. Puglisi, L. Rondoni, A. Vulpiani, J. Stat. Mech. P08010 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Puglisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cecconi, F., Cencini, M., Puglisi, A., Vergni, D., Vulpiani, A. (2014). From the Law of Large Numbers to Large Deviation Theory in Statistical Physics: An Introduction. In: Vulpiani, A., Cecconi, F., Cencini, M., Puglisi, A., Vergni, D. (eds) Large Deviations in Physics. Lecture Notes in Physics, vol 885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54251-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54251-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54250-3

  • Online ISBN: 978-3-642-54251-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics