Skip to main content
Log in

New interaction of high-order breather solutions, lump solutions and mixed solutions for (3+1)-dimensional Hirota–Satsuma–Ito-like equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this letter is an (3+1)-dimensional Hirota–Satsuma–Ito-like equation, which provide strong support for studying the dynamic behavior of nonlinear waves. Based on a special Cole–Hopf transformation and Hirota bilinear method, the bilinear form of the equation is obtained and this form has never been given. High-order breather solutions, lump solutions and mixed solutions are obtained by using complex conjugate parameters and long-wave limit method. Then, the influence of the coefficient \(g_{t}(t)\) of the bilinear equation on the interaction of these solutions is analyzed by means of images. It can be found that \(g_{t}(t)\) changes the interaction of the solutions by influencing the positions and trajectories of higher-order breather solutions, lump solutions and mixed solutions. We find that different values of g(t) make the interaction of solutions different. Finally, the mixed solution of the equation including a breather wave and a line rogue wave is obtained by using the test function, and its dynamic properties are illustrated by means of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data in this paper have been verified by Mathematica mathematical software.

References

  1. Darvishi, M.T., Najafi, M., Kavitha, L., Venkatesh, M.: Stair and step soliton solutions of the integrable (2+1) and (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations. Commun. Theor. Phys. 58, 785–794 (2012)

    Article  MATH  Google Scholar 

  2. Vladimirov, V.A., Ma̧czka, C.: Exact solutions of generalized Burgers equation, describing travelling fronts and their interaction. Rep. Math. Phys. 60, (2007)

  3. Wang, M.L., Zhou, Y.B., Li, Z.B.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    Article  MATH  Google Scholar 

  4. Zhao, X.Q., Tang, D.B.: A new note on a homogeneous balance method. Phys. Lett. A. 297, 59–67 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hietarinta, J.: Hirota‘s bilinear method and its generalization. Int. J. Modern Phys. A 12, 43–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, L., Duan, C.N., Yu, F.J.: An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Phys. Lett. A 383, 1578–1582 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu, Y.X.: Supersymmetric Sawada–Kotera–Ramani equation: bilinear approach. Commun. Theor. Phys. 49, 685–688 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, P.F., Taogetusang.: Lump-type, breather and interaction solutions to the (3+1)-dimensional generalized KdV-type equation. Mod. Phys. Lett. B 34, 2050329 (2020)

  9. Han, P.F., Bao, T.: Construction of abundant solutions for two kinds of (3+1)-dimensional equations with time-dependent coefficients. Nonlinear Dyn. 103, 1817–1829 (2021)

    Article  Google Scholar 

  10. Han, P.F., Bao, T.: Integrability aspects and some abundant solutions for a new (4+1)-dimensional KdV-like equation. Int. J. Mod. Phys. B 35, 2150079 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

  12. Wang, L.H., He, J.S., Xu, H., Wang, J., Porsezian, K.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017)

    Article  MathSciNet  Google Scholar 

  13. Zhang, S.L., Wu, B., Lou, S.Y.: Painlevé analysis and special solutions of generalized Broer–Kaup equations. Phys. Lett. A 300, 40–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar, S., Singh, K., Gupta, R.K.: Painlevé analysis, Lie symmetries and exact solutions for (2+1)-dimensional variable coefficients Broer–Kaup equations. Commun. Nonlinear Sci. Numer. Simul. 17, 1529–1541 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, Q.L., Lou, S.Y., Jia, M.: Solitons and soliton molecules in two nonlocal Alice–Bob Sawada–Kotera systems. Commun. Theor. Phys. 72, 085005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, C.J., Fang, H.: Various kinds of high-order solitons to the Bogoyavlenskii–Kadomtsev–Petviashvili equation. Phys. Scrip. 95, 1–17 (2019)

    Google Scholar 

  17. Fu, Z.T., Liu, S.D., Liu, S.K.: Breather solutions and breather lattice solutions to the Sine–Gordon equation. Phys. Scrip. 76, 1–15 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bang, O., Peyrard, M.: High order breather solutions to a discrete nonlinear Klein–Gordon model. Phys. D Nonlinear Phenomena 81, 9–22 (1995)

    Article  MATH  Google Scholar 

  19. Panayotaros, P.: Breather solutions in the diffraction managed NLS equation. Phys. D Nonlinear Phenomena 206, 213–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, W.Q., Tian, S.F., Zhang, T.T.: Breather waves and rational solutions in the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Comput Math. Appl. 77, 715–723 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, F.: The order-n breather and degenerate breather solutions of the (2+1)-dimensional cmKdV equations. Int. J. Modern Phys. B 35, 2150053 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maier, D.: Construction of breather solutions for nonlinear Klein–Gordon equations on periodic metric graphs. J. Diff. Equations 268, 2491–2509 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deng, G.F., Gao, Y.T., Su, J.J., et al.: Multi-breather wave solutions for a generalized (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid. Appl. Math. Lett. 98, 177–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, Y.F., Ha, J.T., Zhang, H.Q.: Lump solution and lump-type solution to a class of mathematical physics equation. Modern Phys. Lett. B 34, 2050096 (2020)

    Article  MathSciNet  Google Scholar 

  25. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, C.J.: Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn. 87, 2635–2642 (2017)

    Article  MathSciNet  Google Scholar 

  27. Foroutan, M., Manafian, J., Ranjbaran, A.: Lump solution and its interaction to (3+1)-D potential-YTSF equation. Nonlinear Dyn. 92, 2077–2092 (2018)

    Article  Google Scholar 

  28. Ma, H.C., Deng, A.P.: Lump Solution of (2+1)-Dimensional Boussinesq Equation. Commun. Theor. Phys. 65, 546–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, J.Y., Ma, W.X.: Lump solutions to the BKP equation by symbolic computation. Int. J. Modern Phys. B 30, 1640028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. He, J.S., Xu, S.W., Porsezian, K.: New types of Rogue Wave in an Erbium–Doped fibre system. J. Phys. Soc. Jpn. 81, 3002 (2012)

    Article  Google Scholar 

  31. Dai, C.Q., Huang, W.H.: Multi-rogue wave and multi-breather solutions in PT-symmetric coupled waveguides. Appl. Math. Lett. 32, 35–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, H.M., Tian, B., Xie, X.Y., Chai, J., Liu, L., Gao, Y.T.: Soliton and rogue-wave solutions for a (2+1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 86, 369–380 (2016)

    Article  Google Scholar 

  33. Zhao, H.Q., Yuan, J., Zhu, Z.N.: Integrable semi-discrete Kundu–Eckhaus equation: darboux transformation, breather, Rogue wave and continuous limit theory. J. Nonlinear Sci. 28, 43–68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, C.C., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, Z.: Mixed lump-kink and rogue wave-kink solutions for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid mechanics. Eur. Phys. J. Plus 133, 40 (2018)

    Article  Google Scholar 

  35. Elboree, M.K.: Lump solitons, rogue wave solutions and lump-stripe interaction phenomena to an extended (3+1)-dimensional KP equation. Chin. J. Phys. 63, 290–303 (2020)

    Article  MathSciNet  Google Scholar 

  36. Yang, Y.Q., Zhu, Y.J.: Darboux-Bäcklund transformation, breather and rogue wave solutionsfor Ablowitz–Ladik equation. Optik 217, 164920 (2020)

    Article  Google Scholar 

  37. Li, B.Q.: Interaction behaviors between breather and rogue wave in a Heisenberg ferromagnetic equation. Optik 227, 166101 (2020)

    Article  Google Scholar 

  38. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci Numer Simul. 83, 105135 (2020)

  39. Zhao, X., Tian, B., Du, X.X., Hu, C.C., Liu, S.H.: Bilinear Bäcklund transformation, kink and breather-wave solutions for a generalized (2+1)-dimensional Hirota–Satsuma-Ito equation in fluid mechanics. Eur. Phys. J. Plus 136, 159 (2021)

    Article  Google Scholar 

  40. Zhao, Z.L., He, L.C.: M-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota–Satsuma–Ito equation. Appl. Math. Lett. 111, 106612 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu, W., Wazwaz, A.M., Zheng, X.X.: High-order breathers, lumps, and semi-rational solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation. Phys. Scrip. 94, 075203 (2019)

    Article  Google Scholar 

  42. Sun, B.N., Wazwaz, A.M.: General high-order breathers and rogue waves in the (3+1)-dimensional KP–Boussinesq equation. Commun. Nonlinear Sci. Numer. Simul. 64, 1–13 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo, H.D., Xia, T.C., Hu, B.B.: High-order lumps, high-order breathers and hybrid solutions for an extended (3+1)-dimensional Jimbo–Miwa equation in fluid dynamics. Nonlinear Dyn. 100, 601–614 (2020)

    Article  MATH  Google Scholar 

  44. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys 19, 2180 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, C.Y., Gao, Y.T., Li, L.Q., Ding, C.C.: The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in fluid mechanics. Nonlinear Dyn. 102, 1773–1786 (2020)

    Article  Google Scholar 

  47. Ohta, Y., Yang, J..K..: Rogue waves in the Davey–Stewartson I equation. Phys Rev E Stat Nonlin Soft Matter Phys 86, 036604 (2012)

    Article  Google Scholar 

  48. Ohta, Y., Yang, J.K.: Dynamics of rogue waves in the Davey-Stewartson II equation. J. Phys. A: Math. Theor. 46, 105202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rao, J.G., He, J.S., Mihalache, D.: Doubly localized rogue waves on a background of dark solitons for the Fokas system. Appl. Math. Lett. 121, 107435 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rao, J.G., Fokas, A.S., He, J.S.: Doubly localized two-dimensional Rogue waves in the Davey–Stewartson I equation. J. Nonlinear Sci. 31, 67 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editors, reviewers and members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11361040, Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2020LH01008 and Research and Innovation Fund for Postgraduates of Inner Mongolia Normal University under Grant No. CXJJS20089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taogetusang Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Bao, T. New interaction of high-order breather solutions, lump solutions and mixed solutions for (3+1)-dimensional Hirota–Satsuma–Ito-like equation. Nonlinear Dyn 106, 2465–2478 (2021). https://doi.org/10.1007/s11071-021-06895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06895-1

Keywords

Navigation