Skip to main content
Log in

The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in fluid mechanics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is the (2 + 1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation, which can be utilized to describe certain nonlinear phenomena in fluid mechanics. We obtain the higher-order lump, breather and hybrid solutions, and analyze the effects of the constant coefficients \(h_1\), \(h_2\), \(h_4\) and \(h_5\) in that equation on those solutions, since the higher-order lump solutions are generalized via the long-wave limit method, and since the higher-order breather solutions and hybrid solutions composed of the solitons, breathers and lumps are derived. With the help of the analytic and graphic analysis, we get the following: (1) amplitudes of the humps and valleys of the first-order lumps are related to \(h_1\), \(h_2\), \(h_4\) and \(h_5\), proportional to \(h_4\) while inversely proportional to \(h_2\). Velocities of the first-order lumps are proportional to \(h_4\). The second-order lumps describe the interaction between the two first-order lumps, which is elastic since those lumps keep their shapes, velocities and amplitudes unchanged after the interaction. Effects of \(h_2\) and \(h_4\) on the second-order lumps are graphically illustrated. (2) Amplitudes of the first-order breathers are proportional to \(h_2\). Interaction between the breather waves is graphically presented. Effects of \(h_2\) and \(h_1\) on the amplitudes and shapes of the second-order breathers are graphically discussed. (3) Elastic interactions are graphically illustrated, between the first-order breathers and one solitons, the first-order lumps and one solitons, as well as the first-order breathers and first-order lumps. Also graphically illustrated, amplitudes of all those three kinds of hybrid solutions are inversely proportional to \(h_2\), and velocity of the one soliton is positively correlated to \(h_4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yuan, Y.Q., Tian, B., Qu, Q.X., Zhao, X.H., Du, X.X.: Periodic-wave and semirational solutions for the (2+1)-dimensional Davey-Stewartson equations on the surface water waves of finite depth. Z. Angew. Math. Phys. 71, 46 (2020)

  2. Chen, S.S., Tian, B., Sun Y., Zhang, C.R.: Generalized darboux transformations, rogue waves, and modulation instability for the coherently coupled nonlinear Schrödinger equations in nonlinear optics. Ann. Phys. (Berlin) 531, 1900011 (2019)

  3. Tanna, K., Vijayajayanthi, M., Lakshmanan, M.: Mixed solitons in a (2 + 1)-dimensional multicomponent long-wave-short-wave system. Phys. Rev. E 90, 042901 (2014)

    Google Scholar 

  4. Sun, Y., Tian, B., Yuan, Y.Q.: Semi-rational solutions for a (2 + 1)-dimentional Davey-Stewartson system on the surface water waves of finite depth. Nonlinear Dyn. 94, 3029–3040 (2018)

    Google Scholar 

  5. Du, Z., Tian, B., Qu, Q.X., Wu, X.Y., Zhao, X.H.: Vector rational and semi-rational rogue waves for the coupled cubic-quintic nonlinear Schrödinger system in a non-Kerr medium. Appl. Numer. Math. 153, 179–187 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Peregine, D.H.: Long waves on a beach. J. Fluid Mech. 27, 815–827 (1967)

    Google Scholar 

  7. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (2 + 1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: the higher order Boussinesq-Burgers system, auto- and non-auto-Backlund transformations. Appl. Math. Lett. 104, 106170 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma. Mod. Phys. Lett. B 34, 2050287 (2020)

    MathSciNet  Google Scholar 

  10. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H.., Tian, H.Y., Wang, M.: Ablowitz-Kaup-Newell-Segur system, conservation laws and Backlund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science. Int. J. Mod. Phys. B 34, 2050226 (2020)

  11. Yang, D.Y., Tian, B., Qu, Q.X., Yuan, Y.Q., Zhang, C.R. Tian, H.Y.: Generalized Darboux transformation and the higher-order semi-rational solutions for a nonlinear Schrödinger system in a birefringent fiber. Mod. Phys. Lett. B (2020) (in press)

  12. Du, X.X. Tian, B., Yuan, Y.Q., Du, Z.: Symmetry reductions, group-invariant solutions, and conservation laws of a (2+1)-dimensional nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Ann. Phys. (Berlin) 531, 1900198 (2019)

  13. Gao, X.Y., Guo, Y.J., Shan, W.R.: Hetero-Baklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. Phys. Lett. A 384, 126788 (2020)

  14. Gao, X.Y., Guo, Y.J., Shan, W.R.: Viewing the Solar System via a variable-coefficient nonlinear dispersive-wave system. Acta Mech. 231, 4415-4420 (2020)

  15. Cristian, B., Michael, F., Stephane, B.: Deterministic optical rogue waves. Phys. Rev. Lett. 107, 053901 (2011)

    Google Scholar 

  16. Hu, S.H., Tian, B., Du, X.X., Du, Z., Wu, X.Y.: Lie symmetry reductions and analytic solutions for the AB system in a nonlinear optical fiber. J. Comput. Nonlinear Dyn. 14, 111001 (2019)

    Google Scholar 

  17. Yuan, Y.Q., Tian, B., Qu, Q.X., Zhang, C.R., Du, X.X.: Lax pair, binary Darboux transformation and dark solitons for the three-component Gross–Pitaevskii system in the spinor Bose–Einstein condensate. Nonlinear Dyn. 99, 3001–3011 (2020)

    Google Scholar 

  18. Du, X.X., Tian, B., Qu, Q.X., Yuan, Y.Q., Zhao, X.H.: Lie group analysis, solitons, self-adjointnessand conservation laws of the modified Zakharov–Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos, Solitons Fract. 134, 109709 (2020)

    Google Scholar 

  19. Zhang, C.R., Tian, B., Qu, Q.X., Liu, L., Tian, H.Y.: Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber. Z. Angew. Math. Phys. 71, 18 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Zhang, C.R.: Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system. Chaos Solitons Fract. 118, 337–346 (2019)

    MATH  Google Scholar 

  21. Zhang, C.R., Tian, B., Sun, Y., Yin, H.M.: Binary Darboux transformation and vector-soliton-pair interactions with the negatively coherent coupling in a weakly birefringent fiber. EPL 127, 40003 (2019)

  22. Zhao, X., Tian, B., Qu, Q.X., Yuan, Y.Q., Du X.X., Chu, M.X.: Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation. Mod. Phys. Lett. B 34, 2050282 (2020)

  23. Gao, X.Y., Guo, Y.J., Shan, W.R.: Bilinear forms through the binary Bell polynomials, N solitons and Backlund transformations of the Boussinesq-Burgers system for the shallow water. Commun. Theor. Phys. 72, 095002 (2020)

    Google Scholar 

  24. Gao, X.Y., Guo, Y.J., Shan, W.R.: Shallow water in an open sea or a wide channel: Auto- and non-auto-Backlund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. Chaos, Solitons Fract. 138, 109950 (2020)

  25. Gao, X.Y., Guo, Y.J., Shan, W.R., Yuan, Y.Q., Zhang, C.R., Chen, S.S.: Magneto-optical/ferromagnetic-material computation: Backlund transformations, bilinear forms and N solitons for a generalized (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 111, 106627 (2021)

  26. Hu, S.H., Tian, B., Du, X.X., Liu, L., Zhang, C.R.: Lie symmetries, conservation laws and solitons for the AB system with time-dependent coefficients in nonlinear optics or fluid mechanics. Pramana J. Phys. 93, 38 (2019)

    Google Scholar 

  27. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. 79, 576 (2020)

  28. Wang, M., Tian, B., Qu, Q.X., Du, X.X., Zhang, C.R., Zhang, Z.: Lump, lumpoff and rogue waves for a (2 + 1)-dimensional reduced Yu–Toda–Sasa–Fukuyama equation in a lattice or liquid. Eur. Phys. J. Plus 134, 578 (2019)

    Google Scholar 

  29. Li, W., Zhang, Y., Liu, Y.P.: Exact wave solutions for a (3 + 1)-dimensional generalized B-type Kadomtsev–Petviashvili equation. Comput. Math. Appl. 77, 3087–3101 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    MathSciNet  MATH  Google Scholar 

  31. Peregrine, D.H.: Water waves, nonlinear Schrödinger equation and their solutions. ANZIAM J. 25, 16–43 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Akhmediev, N.N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    MATH  Google Scholar 

  33. Yin, H.M., Tian, B., Zhao, X.C.: Chaotic breathers and breather fission/fusion for a vector nonlinear Schrödinger equation in a birefringent optical fiber or wavelength division multiplexed system. Appl. Math. Comput. 368, 124768 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Yin, H.M., Tian, B., Zhao X.C.: Magnetic breathers and chaotic wave fields for a higher-order (2+1)-dimensional nonlinear Schrödinger-type equation in a Heisenberg ferromagnetic spin chain. J. Magn. Magn. Mater. 495, 165871 (2020)

  35. Gao, X.Y., Guo, Y.J., Shan, W.R.: Comment on Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135, 631 (2020)

  36. Du, Z., Tian, B., Chai, H.P., Zhao, X.H.: Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrödinger system in an optical fiber. Appl. Math. Lett. 102, 106110 (2020)

    MathSciNet  MATH  Google Scholar 

  37. An, H.L., Feng, D.L., Zhu, H.X.: General \(M\)-lump, high-order breather and localized interaction solutions to the (2 + 1)-dimensional Sawada-Kotera equation. Nonlinear Dyn. 98, 1275–1286 (2019)

    Google Scholar 

  38. Hu, C.C., Tian, B., Yin, H.M., Zhang, C.R., Zhang, Z.: Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation in a Fluid. Comput. Math. Appl. 78, 166–177 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Hu, C.C., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, Z.: Mixed lump-kink and rogue wave-kink solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid mechanics. Eur. Phys. J. Plus 133, 40 (2018)

    Google Scholar 

  40. Feng, L.L., Tian, S.F., Yan, H., Wang, L., Zhang, T.T.: On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Eur. Phys. J. Plus 131, 241 (2016)

    Google Scholar 

  41. Liu, W.H., Zhang, Y.F., Shi, D.D.: Analysis on lump, lumpoff and rogue waves with predictability to a generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Commun. Theor. Phys. 71, 670–676 (2019)

    MathSciNet  Google Scholar 

  42. Liang, Y.Q., Wei, G.M., Li, X.N.: Painlevé integrability, similarity reductions, new soliton and soliton-like similarity solutions for the (2 + 1)-dimensional BKP equation. Nonlinear Dyn. 62, 195–202 (2010)

    MATH  Google Scholar 

  43. Wazwaz, A.M.: Two B-type Kadomtsev–Petviashvili equations of (2 + 1) and (3 + 1) dimensions: multiple soliton solutions, rational solutions and periodic solutions. Comput. Fluids 86, 357–362 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Lan, Z.Z., Gao, Y.T., Yang, J.W., Su, C.Q., Wang, Q.M.: Solitons, Backlund transformation and Lax pair for a (2 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in the fluid/plasma mechanics. Mod. Phys. Lett. B 30, 1650265 (2016)

    Google Scholar 

  45. Meng, X.H.: The periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation. J. Appl. Math. Phys. 2, 639–643 (2014)

    Google Scholar 

  46. Cao, C.W., Wu, Y.Y., Geng, X.G.: On quasi-periodic solutions of the (2 + 1) dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Phys. Lett. A 256, 59–65 (1999)

    Google Scholar 

  47. Fang, T., Gao, C.N., Wang, H., Wang, Y.H.: Lump-type solution, rogue wave, fusion and fission phenomena for the (2 + 1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Mod. Phys. Lett. B 33, 1950198 (2019)

    MathSciNet  Google Scholar 

  48. Lü, X., Li, J.: Integrability with symbolic computation on the Bogoyavlensky–Konoplechenko model: bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dyn. 77, 135–143 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Qin, B., Tian, B., Liu, L.C., Meng, X.H., Liu, W.J.: Bäcklund transformation and multisoliton solutions in terms of wronskian determinant for (2 + 1)-dimensional breaking soliton equations with symbolic computation. Commun. Theor. Phys. 54, 1059–1066 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Xin, X.P., Liu, X.Q., Zhang, L.L.: Explicit solutions of the Bogoyavlensky–Konoplechenko equation. Appl. Math. Comput. 215, 3669–3673 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Liu, C.F., Dai, Z.D.: Exact soliton solutions for the fifth-order Sawada–Kotera equation. Appl. Math. Comput. 206, 272–275 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 3, 052104 (2013)

    Google Scholar 

  53. Gupta, A.K., Ray, S.S.: Numerical treatment for the solution of fractional fifth-order Sawada–Kotera equation using second kind Chebyshev wavelet method. Appl. Math. Model. 39, 5121–5130 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Batwa, S., Ma, W.X.: Lump solutions to a (2 + 1)-dimensional fifth-order KdV-like equation. Adv. Math. Phys. 2018, 2062398 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Wazwaz, A.M.: Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method. Appl. Math. Comput. 182, 283–300 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Hirota, R.: The direct method in soliton therory. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  57. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2180–2186 (1978)

    MathSciNet  MATH  Google Scholar 

  58. Ablowitz, M.J., Satsuma, J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the editors, reviewers and members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11272023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, CY., Gao, YT., Li, LQ. et al. The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in fluid mechanics. Nonlinear Dyn 102, 1773–1786 (2020). https://doi.org/10.1007/s11071-020-05975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05975-y

Keywords

Navigation