Skip to main content
Log in

Flutter control and mitigation of limit cycle oscillations in aircraft wings using distributed vibration absorbers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we demonstrate the application of the conserved-mass metamaterial concept to control the flutter onset in aircraft wings and mitigate their induced vibrations. The numerical study is conducted on a rigid airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. The aeroelastic system is attached to an array of passive vibration absorbers. The mass of the vibration absorbers is deducted from the mass of the aeroelastic structure, which makes the total mass of the system conserved. The equal mass constraint is imposed so that improvements in the aeroelastic performance are due to the addition of the vibration absorbers and not the added mass attached to the main aeroelastic system. The linear analysis of the aeroelastic system reveals that a proper selection of the stiffness and position of the vibration absorber leads to 23.4% increase in the flutter speed when deploying one single absorber. Placing the vibration absorber closer to the leading edge is observed to delay the occurrence of flutter. Furthermore, considering an array of distributed vibration absorbers with a proper selection of their stiffness is found to result in an increase of the flutter speed by 84%. We also develop the normal form of the aeroelastic system equipped with the vibration absorber using the method of multiple scales to investigate the limit cycle oscillations (LCOs) beyond the flutter boundary (Hopf bifurcation). The analytical results are verified against their numerical counterparts. The normal form is used to examine the effects of the vibration absorber stiffness nonlinearities on the dynamic behavior of the aeroelastic system. Incorporating quadratic and cubic stiffness coefficients is found to degrade the aeroelastic system by amplifying the amplitude of LCOs beyond flutter. However, soft pitch spring proved to be beneficial to decrease the LCO amplitude. Moreover, the increase in the number of the vibration absorbers while imposing the equal mass constraint is observed to lead to relatively lower LCO amplitudes in the post-flutter regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6:
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lee, B., Jiang, L., Wong, Y.: Flutter of an airfoil with a cubic nonlinear restoring force. In 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit (1998).

  2. Chabalko, C., Hajj, M., Mook, D., Silva, W.: Characterization of the LCO Response behaviors of the NATA model. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th (2006).

  3. Ghommem, M., Hajj, M.R., Nayfeh, A.H.: Uncertainty analysis near bifurcation of an aeroelastic system. J. Sound Vib. 329(16), 3335–3347 (2010)

    Article  Google Scholar 

  4. Sanches, L., Guimarães, T.A.M., Marques, F.D.: Aeroelastic tailoring of nonlinear typical section using the method of multiple scales to predict post-flutter stable LCOs. Aerosp. Sci. Technol. 90, 157–168 (2019)

    Article  Google Scholar 

  5. Abdelkefi, A., Ghommem, M., Nuhait, A.O., Hajj, M.R.: Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters. J. Sound Vib. 333(1), 166–177 (2014)

    Article  Google Scholar 

  6. Hayat, K., Ha, S.K.: Flutter performance of large-scale wind turbine blade with shallow-angled skins. Compos. Struct. 132, 575–583 (2015)

    Article  Google Scholar 

  7. Griffin, D., Zuteck, M.: Scaling of composite wind turbine blades for rotors of 80 to 120 meter diameter. In 20th 2001 ASME Wind Energy Symposium (2001).

  8. Basta, E., Ghommem, M., Romdhane, L., Abdelkafi, A.: Modeling and experimental comparative analysis on the performance of small-scale wind turbines. Wind Struct. 30(3), 261–273 (2020)

    Google Scholar 

  9. Robinett, R.D., Wilson, D.G.: Maximizing the performance of wind turbines with nonlinear aeroservoelastic power flow control. In 2010 IEEE International Conference on Control Applications (2010).

  10. Berci, M., Mascetti, S., Incognito, A., Gaskell, P.H., Toropov, V.V.: Gust response of a typical section via CFD and analytical solutions. In V European Conference on Computational Fluid Dynamics (2010).

  11. Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid–structure interaction using space–time finite elements. Comput. Methods Appl. Mech. Eng. 193(23–26), 2087–2104 (2004)

    Article  MATH  Google Scholar 

  12. Borri, C., Costa, C., Zahlten, W.: Non-stationary flow forces for the numerical simulation of aeroelastic instability of bridge decks. Comput. Struct. 80(12), 1071–1079 (2002)

    Article  Google Scholar 

  13. Yang, Z.C., Zhao, L.C.: Analysis of limit cycle flutter of an airfoil in incompressible flow. J. Sound Vib. 123(1), 1–13 (1988)

    Article  Google Scholar 

  14. Weisshaar, T.A.: Divergence of forward swept composite wings. J. Aircr. 17(6), 442–448 (1980)

    Article  Google Scholar 

  15. Farmer, M.: A two-degree-of-freedom flutter mount system with low damping for testing rigid wings at different angles of attack. In NASA Technical Memorandum, vol. NASA-TM-83302, p. 24 (1982).

  16. Hansen, M.H.: Aeroelastic instability problems for wind turbines. Wind Energy 10(6), 551–577 (2007)

    Article  Google Scholar 

  17. De Marqui Junior, C., Rebolho, D.C., Belo, E.M., Marques, F.D.: Identification of flutter parameters for a wing model. J. Braz. Soc. Mech. Sci. Eng. 28(3), 2006.

  18. Asjes, D., Diwadkar, A., Vaidya, U., Kelkar, A., Vogel, J.M., Chaussee, D.: Modeling and analysis of rotational freeplay nonlinearity of a 2D airfoil. In 2014 American control conference (2014).

  19. Liu, J.-K., Zhao, L.-C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vib. 154(1), 117–124 (1992)

    Article  MATH  Google Scholar 

  20. Dowell, E., Edwards, J., Strganac, T.: Nonlinear Aeroelasticity. J. Aircr. 40(5), 857–874 (2003)

    Article  Google Scholar 

  21. Woolston, D.S., Runyan, H.L., Andrews, R.E.: An investigation of effects of certain types of structural nonlinearities on wing and control surface flutter. J. Aeronaut. Sci. 24(1), 57–63 (1957)

    Article  Google Scholar 

  22. Shen, S.F.: An approximate analysis of nonlinear flutter problems. J. Aerospace Sci. 26(1), 25–32 (1959)

    Article  MATH  Google Scholar 

  23. Balakrishnan, A.V.: Aeroelasticity: the continuum theory. Springer, New York (2012)

    Book  MATH  Google Scholar 

  24. Hodges, D.H., and Pierce, G.A.: Introduction to Structural Dynamics and Aeroelasticity, vol. 15 (2011).

  25. Lee, B.H.K., Price, S.J., Wong, Y.S.: Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Prog. Aerosp. Sci. 35(3), 205–334 (1999)

    Article  Google Scholar 

  26. O’Neil, T., Strganac, T.W.: Aeroelastic response of a rigid wing supported by nonlinear springs. J. Aircr. 35(4), 616–622 (1998)

    Article  Google Scholar 

  27. Price, S., Alighanbari, H., Lee, B.: The aeroelastic response of a two-dimensional airfoil with bilinear and cubic structural nonlinearities. In 35th Structures, Structural Dynamics, and Materials Conference (1994).

  28. Strganac, T., Ko, J., Thompson, D., Kurdila, A.: Identification and control of limit cycle oscillations in aeroelastic systems. In 40th Structures, Structural Dynamics, and Materials Conference and Exhibit (1999).

  29. Shahrzad, P., Mahzoon, M.: Limit cycle flutter of airfoils in steady and unsteady flows. J. Sound Vib. 256(2), 213–225 (2002)

    Article  Google Scholar 

  30. Dimitriadis, G., Vio, G., Cooper, J.: Application of higher-order harmonic balance to non-linear aeroelastic systems. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th, (2006)

  31. Liu, G., Lv, Z.R., Liu, J.K., Chen, Y.M.: Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method. Int. J. Non-Linear Mech. 100, 10–19 (2018)

    Article  Google Scholar 

  32. Peretz, O., Gat, A.D.: Forced vibrations as a mechanism to suppress flutter—An aeroelastic Kapitza’s pendulum. J. Fluids Struct. 85, 138–148 (2019)

    Article  Google Scholar 

  33. Gilliatt, H.C., Strganac, T.W., Kurdila, A.J.: An Investigation of Internal Resonance in Aeroelastic Systems. Nonlinear Dyn. 31(1), 1–22 (2003)

    Article  MATH  Google Scholar 

  34. Wang, D., Chen, Y., Wiercigroch, M., Cao, Q.: Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices. Appl. Math. Mech. 37(9), 1251–1274 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gao, G., Zhu, L.: Nonlinearity of mechanical damping and stiffness of a spring-suspended sectional model system for wind tunnel tests. J. Sound Vib. 355, 369–391 (2015)

    Article  Google Scholar 

  36. Nayfeh, A.H., Ghommem, M., Hajj, M.R.: Normal form representation of the aeroelastic response of the Goland wing. Nonlinear Dyn. 67(3), 1847–1861 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Beran, P.S., Strganac, T.W., Kim, K., Nichkawde, C.: Studies of store-induced limit-cycle oscillations using a model with full system nonlinearities. Nonlinear Dyn. 37(4), 323–339 (2004)

    Article  MATH  Google Scholar 

  38. Theodorsen, T., Mutchler, W.: General Theory of Aerodynamic Instability and the Mechanism of Flutter; NACA: Langley Field, VA, USA (1935)

  39. Muturi, N., Spies, A.C., Bender, K. Lee, C.L.: Stall flutter oscillation measurements from a two degree-of-freedom airfoil with nonlinear stiffness. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2013).

  40. Tsushima, N., Su, W.: Flutter suppression for highly flexible wings using passive and active piezoelectric effects. Aerosp. Sci. Technol. 65, 78–89 (2017)

    Article  Google Scholar 

  41. Kassem, M., Yang, Z., Gu, Y., Wang, W., Safwat, E.: Active dynamic vibration absorber for flutter suppression. J. Sound Vib. 469, 115110 (2020)

    Article  Google Scholar 

  42. Verstraelen, E., Habib, G., Kerschen, G., Dimitriadis, G.: Experimental passive flutter suppression using a linear tuned vibration absorber. AIAA J. 55(5), 1707–1722 (2017)

    Article  Google Scholar 

  43. Yang, F., Sedaghati, R., Esmailzadeh, E.: Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. J. Vib. Control, p. 1077546320984305 (2021)

  44. Casalotti, A., Arena, A., Lacarbonara, W.: Mitigation of post-flutter oscillations in suspension bridges by hysteretic tuned mass dampers. Eng. Struct. 69, 62–71 (2014)

    Article  Google Scholar 

  45. Bakis, K.N., Massaro, M., Williams, M.S., Graham, J.M.R.: Passive control of bridge wind-induced instabilities by tuned mass dampers and movable flaps. J. Eng. Mech. 143(9), 04017078 (2017)

    Google Scholar 

  46. Kwon, S.D., Park, K.S.: Suppression of bridge flutter using tuned mass dampers based on robust performance design. J. Wind Eng. Ind. Aerodyn. 92(11), 919–934 (2004)

    Article  Google Scholar 

  47. Fitzgerald, B., Sarkar, S., Staino, A.: Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs). J. Sound Vib. 419, 103–122 (2018)

    Article  Google Scholar 

  48. Stewart, G.M., Lackner, M.A.: The impact of passive tuned mass dampers and wind–wave misalignment on offshore wind turbine loads. Eng. Struct. 73, 54–61 (2014)

    Article  Google Scholar 

  49. Fitzgerald, B., Basu, B., Nielsen, S.R.: Active tuned mass dampers for control of in-plane vibrations of wind turbine blades. Struct. Control. Health Monit. 20(12), 1377–1396 (2013)

    Article  Google Scholar 

  50. Lu, Z., Wang, D., Masri, S.F., Lu, X.L.: An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers. Smart Struct. Syst 18(1), 93–115 (2016)

    Article  Google Scholar 

  51. Basta, E., Ghommem, M., Emam, S.: Vibration suppression of nonlinear rotating metamaterial beams. Nonlinear Dyn. 101(1), 311–332 (2020)

    Article  Google Scholar 

  52. Carboni, B., Lacarbonara, W.: Nonlinear vibration absorber with pinched hysteresis: theory and experiments. J. Eng. Mech. 142(5), 04016023 (2016)

    Google Scholar 

  53. Habib, G., Kádár, F., Papp, B.: Impulsive vibration mitigation through a nonlinear tuned vibration absorber. Nonlinear Dyn. 98(3), 2115–2130 (2019)

    Article  MATH  Google Scholar 

  54. Basili, M., Casini, P., Morelli, L. and Vestroni, F.: Vibration mitigation of rail noise barriers by hysteretic absorbers. J. Appl. Comput. Mech. (2020)

  55. Vestroni, F., Casini, P.: Mitigation of structural vibrations by hysteretic oscillators in internal resonance. Nonlinear Dyn. 99(1), 505–518 (2020)

    Article  MATH  Google Scholar 

  56. Lacarbonara, W., Cetraro, M.: Flutter control of a lifting surface via visco-hysteretic vibration absorbers. Int. J. Aeronaut. Space Sci. 12(4), 331–345 (2011)

    Article  Google Scholar 

  57. Malher, A., Touzé, C., Doaré, O., Habib, G., Kerschen, G.: Flutter control of a two-degrees-of-freedom airfoil using a nonlinear tuned vibration absorber. J. Comput. Nonlinear Dyn. 12(5), 2017.

  58. Arena, A., Taló, M., Snyder, M.P., Lacarbonara, W.: Enhancing flutter stability in nanocomposite thin panels by harnessing CNT/polymer dissipation. Mech. Res. Commun. 104, p. 103495 (2020).

  59. Strganac, T.W., Ko, J., Thompson, D.E., Kurdila, A.J.: Identification and control of limit cycle oscillations in aeroelastic systems. J. Guid. Control. Dyn. 23(6), 1127–1133 (2000)

    Article  Google Scholar 

  60. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics. J. Wiley & Sons, New York (1995)

    Book  MATH  Google Scholar 

  61. Nayfeh, A.H.: Introduction to perturbation techniques. Wiley Series in Nonlinear Sceince, NY (1993)

    MATH  Google Scholar 

  62. Nayfeh, A.H.: The method of normal forms. Wiley-VCH, Weinheim (2011)

    Book  MATH  Google Scholar 

  63. Pettit, C.L., Beran, P.S.: Effects of parametric uncertainty on airfoil limit cycle oscillation. J. Aircraft 40(5) (2003).

Download references

Acknowledgements

The author M. Ghommem gratefully acknowledges the financial support via the American University of Sharjah Faculty research grant FRG19-M-E26 (fund number EN6001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghommem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The notations presented in Eq. (17) are expressed as:

\(B_{1} = - 2U_{f}^{2} \left( {k_{1} I_{1} + k_{2} I_{2} } \right)\)

\(B_{2} = \overline{{k_{h0} }} \left( {c_{1} I_{3} + c_{2} I_{4} } \right)\)

\(B_{3} = \overline{{k_{\alpha 0} }} \left( {c_{5} I_{5} + c_{6} I_{6} } \right)\)

\(B_{4} = \overline{{k_{ab0} }} \left( {c_{6} I_{7} + c_{7} I_{8} + c_{8} I_{9} } \right)\)

\(I_{1} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{2} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{3} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{4} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{5} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{6} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{7} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{8} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\)

\(I_{9} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ \end{array} } \right)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basta, E., Ghommem, M. & Emam, S. Flutter control and mitigation of limit cycle oscillations in aircraft wings using distributed vibration absorbers. Nonlinear Dyn 106, 1975–2003 (2021). https://doi.org/10.1007/s11071-021-06889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06889-z

Keywords

Navigation