Skip to main content
Log in

Event-triggered compound learning tracking control of nonstrict-feedback nonlinear systems in sensor-to-controller channel

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the event-triggered tracking control of the nonstrict-feedback nonlinear system with time-varying disturbances. While the fuzzy logic systems (FLSs) approximate the unknown dynamics, an event-triggered compound learning algorithm is originally developed to accurately estimate the total uncertainties. By referring to an event-triggered adaptive model, the control laws are derived without provoking the problem of “algebraic loop,” seeing Remark 3. The command filters are employed to generate the continuous substitutes for both the virtual control laws and their derivatives, so as to solve the recently proposed problem of “jumps of virtual control laws” arising in the backstepping-based event-triggered control (ETC). The triggering condition is constructed to guarantee the similarity between the adaptive model and the original system. Estimation of optimal fuzzy weights and compound disturbances follows from the event-triggered update laws. While the satisfactory learning performance is achieved, the proposed control scheme can guarantee the semi-globally uniformly ultimate boundedness (SGUUB) of all the tracking errors. Finally, a numerical experiment verifies the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The data for supporting the findings will be made available upon the reasonable request for academic use by contacting the corresponding author.

References

  1. Tong, S., Li, Y., Sui, S.: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities. IEEE Transactions Fuzzy Syst. 24(6), 1426–1440 (2016)

    Google Scholar 

  2. Tong, S., Li, Y., Sui, S.: Adaptive fuzzy tracking control design for siso uncertain nonstrict feedback nonlinear systems. IEEE Transactions Fuzzy Syst. 24(6), 1441–1454 (2016)

    Google Scholar 

  3. Chen, B., Liu, X.P., Ge, S.S., Lin, C.: Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Transactions Fuzzy Syst. 20(6), 1012–1021 (2012)

    Google Scholar 

  4. Chen, B., Liu, K., Liu, X., Shi, P., Lin, C., Zhang, H.: Approximation-based adaptive neural control design for a class of nonlinear systems. IEEE Transactions Cybern. 44(5), 610–619 (2014)

    Google Scholar 

  5. Chen, B., Zhang, H., Lin, C.: Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Transactions Neural Netw. Learn. Syst. 27(1), 89–98 (2016)

    MathSciNet  Google Scholar 

  6. Zhou, Q., Li, H., Wu, C., Wang, L., Ahn, C.K.: Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach. IEEE Transactions Syst. Man Cybern. Syst. 47(8), 1979–1989 (2017)

    Google Scholar 

  7. Wang, H., Liu, X., Liu, K., Karimi, H.R.: Approximation-based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems. IEEE Transactions Fuzzy Syst. 23(5), 1746–1760 (2015)

    Google Scholar 

  8. Wang, H., Liu, K., Liu, X., Chen, B., Lin, C.: Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Transactions Cybern. 45(9), 1977–1987 (2015)

    Google Scholar 

  9. Zhou, Q., Li, H., Wang, L., Lu, R.: Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Transactions Syst. Man Cybern. Syst. 48(10), 1747–1758 (2018)

    Google Scholar 

  10. Li, Y., Tong, S.: Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems. IEEE Transactions Fuzzy Syst. 25(3), 668–681 (2017)

    Google Scholar 

  11. Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for mimo nonstrict feedback systems. IEEE Transactions Fuzzy Syst. 27(1), 96–110 (2019)

    MathSciNet  Google Scholar 

  12. Chen, B., Zhang, H., Liu, X., Lin, C.: Neural observer and adaptive neural control design for a class of nonlinear systems. IEEE Transactions Neural Netw. Learn. Syst. 29(9), 4261–4271 (2018)

    Google Scholar 

  13. Liu, Y., Li, S., Tong, S., Chen, C.L.P.: Neural approximation-based adaptive control for a class of nonlinear nonstrict feedback discrete-time systems. IEEE Transactions Neural Netw. Learn. Syst. 28(7), 1531–1541 (2017)

    MathSciNet  Google Scholar 

  14. Ge, S.S., Li, G.Y., Lee, T.H.: Adaptive nn control for a class of strict-feedback discrete-time nonlinear systems. Automatica 39(5), 807–819 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Ioannou, P., Sun, J.: Robust Adaptive Control. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  16. Pan, Y., Zhou, Y., Sun, T., Er, M.J.: Composite adaptive fuzzy \(h_\infty \) tracking control of uncertain nonlinear systems. Neurocomputing 99, 15–24 (2013)

    Google Scholar 

  17. Xu, B., Shi, Z., Yang, C., Sun, F.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Transactions Cybern. 44(12), 2626–2634 (2014)

    Google Scholar 

  18. Li, Y., Tong, S.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Transactions Cybern. 45, 2299–2308 (2015)

    Google Scholar 

  19. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain mimo nonlinear systems with time-varying delays and input saturation. IEEE Transactions Fuzzy Syst. 24, 841–853 (2016)

    Google Scholar 

  20. Xu, B., Sun, F., Pan, Y., Chen, B.: Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone. IEEE Transactions Syst. Man Cybern. Syst. 47(8), 1854–1862 (2017)

    Google Scholar 

  21. Xu, B.: Composite learning control of flexible-link manipulator using nn and dob. IEEE Transactions Syst. Man Cybern. Syst. 48(11), 1979–1985 (2018)

    Google Scholar 

  22. Wang, L., Basin, M.V., Li, H., Lu, R.: Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Transactions Fuzzy Syst. 26(4), 2336–2347 (2018)

    Google Scholar 

  23. Deng, Y., Zhang, X., Zhang, Q., Hu, Y.: Event-triggered composite adaptive fuzzy control of sailboat with heeling constraint. Ocean Eng. 211, 107627 (2020)

    Google Scholar 

  24. Peng, Z., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Transactions Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)

    MathSciNet  Google Scholar 

  25. Liu, L., Wang, D., Peng, Z.: Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances. Neurocomputing 173, 799–808 (2016)

    Google Scholar 

  26. Pan, Y., Sun, T., Yu, H.: Composite adaptive dynamic surface control using online recorded data. Int. J. Robust Nonlinear Control 26(18), 3921–3936 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Pan, Y., Yu, H.: Composite learning robot control with guaranteed parameter convergence. Automatica 89, 398–406 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Guo, K., Pan, Y., Zheng, D., Yu, H.: Composite learning control of robotic systems: a least squares modulated approach. Automatica (2020). https://doi.org/10.1016/j.automatica.2019.108612

    Article  MATH  Google Scholar 

  29. Xu, B., Yang, D., Shi, Z., Pan, Y., Chen, B., Sun, F.: Online recorded data-based composite neural control of strict-feedback systems with application to hypersonic flight dynamics. IEEE Transactions Neural Netw. Learn. Syst. 29(8), 3839–3849 (2018)

    MathSciNet  Google Scholar 

  30. Xu, B., Shou, Y., Luo, J., Pu, H., Shi, Z.: Neural learning control of strict-feedback systems using disturbance observer. IEEE Transactions Neural Netw. Learn. Syst. 30(5), 1296–1307 (2019)

    MathSciNet  Google Scholar 

  31. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions Automatic Control 62(4), 2071–2076 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Cao, L., Li, H., Zhou, Q.: Adaptive intelligent control for nonlinear strict-feedback systems with virtual control coefficients and uncertain disturbances based on event-triggered mechanism. IEEE Transactions Cybern. 48(12), 3390–3402 (2018)

    Google Scholar 

  33. Zhu, Z., Pan, Y., Zhou, Q., Lu, C.: Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Transactions Fuzzy Syst. (2020). https://doi.org/10.1109/tfuzz.2020.2973950

    Article  Google Scholar 

  34. Sun, K., Qiu, J., Karimi, H.R., Fu, Y.: Even-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Transactions Fuzzy Syst. (2020). https://doi.org/10.1109/tfuzz.2020.2979129

    Article  Google Scholar 

  35. Wang, M., Wang, Z., Chen, Y., Sheng, W.: Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: a triggering threshold compensation strategy. IEEE Transactions Neural Netw. Learn. Syst. 31(6), 1968–1981 (2020)

    MathSciNet  Google Scholar 

  36. Wang, M., Wang, Z., Chen, Y., Sheng, W.: Adaptive neural event-triggered control for discrete-time strict-feedback nonlinear systems. IEEE Transactions Cybern. 50(7), 2946–2958 (2020)

    Google Scholar 

  37. Szanto, N., Narayanan, V., Jagannathan, S.: Event-sampled direct adaptive nn output-and state-feedback control of uncertain strict-feedback system. IEEE Transactions Neural Netw. Learn. Syst. 29(5), 1850–1863 (2018)

    MathSciNet  Google Scholar 

  38. Li, Y., Yang, G.: Model-based adaptive event-triggered control of strict-feedback nonlinear systems. IEEE Transactions Neural Netw. Learn. Syst. 29(4), 1033–1045 (2018)

    MathSciNet  Google Scholar 

  39. Li, Y., Yang, G.: Observer-based fuzzy adaptive event-triggered control co-design for a class of uncertain nonlinear systems. IEEE Transactions Fuzzy Syst. 26(3), 1589–1599 (2018)

    Google Scholar 

  40. Deng, Y., Zhang, X., Zhang, G., Han, X.: Adaptive neural tracking control of strict-feedback nonlinear systems with event-triggered state measurement. ISA Transactions (2021). https://doi.org/10.1016/j.isatra.2021.01.049

    Article  Google Scholar 

  41. Cao, L., Li, H., Wang, N., Zhou, Q.: Observer-based event-triggered adaptive decentralized fuzzy control for nonlinear large-scale systems. IEEE Transactions Fuzzy Syst. 27(6), 1201–1214 (2019)

    Google Scholar 

  42. Ma, J., Xu, S., Zhang, Z.: Event-triggered adaptive neural network control for nonstrict-feedback nonlinear time-delay systems with unknown control directions. IEEE Transactions Neural Netw. Learn. Syst. 31(10), 4196–4205 (2020). https://doi.org/10.1109/tnnls.2019.2952709

    Article  MathSciNet  Google Scholar 

  43. Xu, Y., Zhou, Q., Li, T., Liang, H.: Event-triggered neural control for non-strict-feedback systems with actuator failures. IET Control Theory Appl. 13(2), 171–182 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Wang, A., Liu, L., Qiu, J., Feng, G.: Finite-time adaptive fuzzy control for nonstrict-feedback nonlinear systems via an event-triggered strategy. IEEE Transactions Fuzzy Syst. 28(9), 2164–2174 (2020)

    Google Scholar 

  45. Wang, A., Liu, L., Qiu, J.: Event-triggered adaptive fuzzy output-feedback control for nonstrict-feedback nonlinear systems with asymmetric output constraint. IEEE Transactions Cybern. (2020). https://doi.org/10.1109/tcyb.2020.2974775

    Article  Google Scholar 

  46. Wang, W., Li, Y., Tong, S.: Neural-network-based adaptive event-triggered consensus control of nonstrict-feedback nonlinear systems. IEEE Transactions Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/tnnls.2020.2991015

    Article  Google Scholar 

  47. Wang, A., Liu, L., Qiu, J., Feng, G.: Event-triggered robust adaptive fuzzy control for a class of nonlinear systems. IEEE Transactions Fuzzy Syst. 27(8), 1648–1658 (2019)

    Google Scholar 

  48. Sahoo, A., Xu, H., Jagannathan, S.: Neural network-based event-triggered state feedback control of nonlinear continuous-time systems. IEEE Transactions Neural Netw. Learn. Syst. 27(3), 497–509 (2016)

    MathSciNet  Google Scholar 

  49. Narayanan, V., Jagannathan, S., Ramkumar, K.: Event-sampled output feedback control of robot manipulators using neural networks. IEEE Transactions Neural Netw. Learn. Syst. 30(6), 1651–1658 (2019)

    MathSciNet  Google Scholar 

  50. Deng, Y., Zhang, X., Im, N., Zhang, G., Zhang, Q.: Event-triggered robust fuzzy path following control for underactuated ships with input saturation. Ocean Eng. 186, 106122 (2019)

    Google Scholar 

  51. Deng, Y., Zhang, X., Zhang, G., Huang, C.: Parallel guidance and event-triggered robust fuzzy control for path following of autonomous wing-sailed catamaran. Ocean Eng. 190, 106442 (2019)

    Google Scholar 

  52. Jiao, J., Wang, G.: Event triggered trajectory tracking control approach for fully actuated surface vessel. Neurocomputing 182, 267–273 (2016)

    Google Scholar 

  53. Deng, Y., Zhang, X., Im, N., Zhang, G., Zhang, Q.: Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters. IEEE Transactions Neural Netw. Learn. Syst. 31(10), 4001–4014 (2020)

    MathSciNet  Google Scholar 

  54. Deng, Y., Zhang, X., Zhao, B., Zhao, H.: Event-triggered compound learning tracking control of autonomous surface vessels in the measurement network. Ocean Eng. 228, 108817 (2021)

    Google Scholar 

  55. Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Transactions Automatic Control 54(6), 1391–1395 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Chang, Y., Chan, W.: Adaptive dynamic surface control for uncertain nonlinear systems with interval type-2 fuzzy neural networks. IEEE Transactions Cybern. 44(2), 293–304 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Natural Science Foundation of China (No. 52101375), the Hebei Province Natural Science Fund (No. E2021203142 and No. E2019203431), the Joint Funds of the National Natural Science Foundation of China (No. U20A20332), and the Foundation for Innovative Research Groups of the National Science Foundation of Hebei Province (No. E2020203174). We’d like to thank Professor Chen Bing in Institute of Complexity Science, Qingdao University for his suggestions on the nonstrict-nonlinear system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ni.

Ethics declarations

Conflict of interest

There is no potential conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of bounded estimation errors

Select the Lyapunov function as \(V_{wi}={\tilde{W}}_i^\mathrm {T}{\tilde{W}}_i\). By invoking (8), (9) and the Young’s inequality, \(\varDelta V_{wi}\) is derived as

$$\begin{aligned} \varDelta V_{wi}= & {} -{\tilde{W}}_i^\mathrm {T}{\tilde{W}}_i+(W_i-l_{wi}{\hat{W}}_i \nonumber \\&-\gamma _{wi}\phi _i\phi _i^\mathrm {T}{\tilde{W}}_i-\gamma _{wi}\phi _iD_i)^\mathrm {T} \nonumber \\&\times (W_i-l_{wi}{\hat{W}}_i-\gamma _{wi}\phi _i\phi _i^\mathrm {T}{\tilde{W}}_i -\gamma _{wi}\phi _iD_i) \nonumber \\= & {} (l_{wi}{\tilde{W}}_i^\mathrm {T}+(1-l_{wi})W_i^\mathrm {T} \nonumber \\&-\gamma _{wi}{\tilde{W}}_i^\mathrm {T}\phi _i\phi _i^\mathrm {T} -\gamma _{wi}D_i\phi _i^\mathrm {T})\nonumber \\&\times (l_{wi}{\tilde{W}}_i+(1-l_{wi})W_i^\mathrm {T} -\gamma _{wi}\phi _i\phi _i^\mathrm {T}{\tilde{W}}_i\nonumber \\&-\gamma _{wi}\phi _iD_i) -{\tilde{W}}_i^\mathrm {T}{\tilde{W}}_i \nonumber \\\le & {} 4(1-l_{wi})^2W_i^\mathrm {T}W_i+3l_{wi}^2{\tilde{W}}_i^\mathrm {T} {\tilde{W}}_i \nonumber \\&+4\gamma _{wi}^2D_i^2\phi _i^\mathrm {T}\phi _i \nonumber \\&+3\gamma _{wi}^2{\tilde{W}}_i^\mathrm {T}\phi _i\phi _i^\mathrm {T} \phi _i\phi _i^\mathrm {T}{\tilde{W}}_i-{\tilde{W}}_i^\mathrm {T}{\tilde{W}}_i \nonumber \\\le & {} -(1-3l_{wi}^2-3\gamma _{wi}^2n_{\phi _i}^2){\tilde{W}}_i^\mathrm {T} {\tilde{W}}_i+4\gamma _{wi}^2n_{\phi _i}b_{D_i}\nonumber \\&+4(1-l_{wi})^2W_i^\mathrm {T}W_i \end{aligned}$$
(A-1)

where \(\Vert \phi _i\Vert ^2\le n_{\phi _i}\), \(D_i^2\le b_{D_i}\) and \(\lambda _{max}(\phi _i\phi _i^\mathrm {T}\phi _i\phi _i^\mathrm {T})\le n_{\phi _i}^2\). Because the maximum inter-event time \(T_{max}\) is finite and \(\Vert \varphi _i\Vert \) and \(\sigma _i\) are bounded, it is tenable that the positive constants of \(n_{\phi _i}\) and \(b_{D_i}\) exist.

Fig. 12
figure 12

Accumulation of sampling times

Fig. 13
figure 13

Inter-event time of ET-CL

Select the Lyapunov function as \(V_{\sigma i}={\tilde{\sigma }}_i^2\). By invoking (12), (13) and the Young’s inequality, \(\varDelta V_{\sigma i}\) is derived as

$$\begin{aligned} \begin{aligned} \varDelta V_{\sigma _i}&=(\sigma _i-l_{\sigma i}{\hat{\sigma }}_i-\gamma _{\sigma i}{\tilde{W}}_i^\mathrm {T}\phi _i-\gamma _{\sigma i}D_i)^2-{\tilde{\sigma }}_i^2\\&=(l_{\sigma i}{\tilde{\sigma }}_i+(1-l_{\sigma i})\sigma _i-\gamma _{\sigma i}{\tilde{W}}_i^\mathrm {T}\phi _i-\gamma _{\sigma i}D_i)^2\\&\quad -{\tilde{\sigma }}_i^2\\&\le 4(1-l_{\sigma i})^2\sigma _i^2+4l_{\sigma i}^2{\tilde{\sigma }}_i^2+4\gamma _{\sigma i}^2{\tilde{W}}_i^\mathrm {T}\phi _i\phi _i^\mathrm {T}{\tilde{W}}_i\\&\quad -{\tilde{\sigma }}_i^2 +4\gamma _{\sigma i}^2D_i^2\\&\le -(1-4l_{\sigma i}^2){\tilde{\sigma }}_i^2+4(1-l_{\sigma i})^2b_{\sigma _i}+4\gamma _{\sigma i}^2b_{D_i}\\&\quad +4\gamma _{\sigma i}^2n_{\phi _i}{\tilde{W}}^\mathrm {T}_i{\tilde{W}}_i \end{aligned} \end{aligned}$$
(A-2)

where \(b_{\sigma _i}=(b_{d_i}+b_{\varepsilon _i})^2\). Define \(V_i=V_{wi}+V_{\sigma i}\). By adding up (A-1) and (A-2), it renders

$$\begin{aligned} \begin{aligned} \varDelta V_i&\le -(1-3l_{wi}^2-3\gamma _{wi}^2n_{\phi _i}^2-4\gamma _{\sigma i}^2n_{\phi _i}){\tilde{W}}_i^\mathrm {T}{\tilde{W}}_i\\&\quad +4\gamma _{\sigma i}^2b_{D_i}\\&\quad -(1-4l_{\sigma i}^2){\tilde{\sigma }}_i^2+4\gamma _{wi}^2n_{\phi _i} b_{D_i}\\&\quad +4(1-l_{wi})^2W_i^\mathrm {T}W_i\\&\quad +4(1-l_{\sigma i})^2b_{\sigma _i} \end{aligned} \end{aligned}$$
(A-3)

By selecting \(l_{\sigma i}<1/2\), \(3\gamma _{wi}^2n_{\phi _i}^2+4\gamma _{\sigma i}^2n_{\phi _i}<1\) and \(l_{wi}<(1-3\gamma _{wi}^2n_{\phi _i}^2-4\gamma _{\sigma i}^2n_{\phi _i})/\sqrt{3}\), and letting \(a_i=\min \{1-3l_{wi}^2-3\gamma _{wi}^2n_{\phi _i}^2-4\gamma _{\sigma i}^2n_{\phi _i},1-4l_{\sigma i}^2\}\) and \(b_i=4\gamma _{wi}^2n_{\phi _i}b_{D_i}+4(1-l_{wi})^2W_i^\mathrm {T}W_i+4(1-l_{\sigma i})^2b_{\sigma _i}+4\gamma _{\sigma i}^2b_{D_i}\), (A-3) can be simplified as \(\varDelta V_i\le -a_iV_i+b_i\). Because \({\tilde{\sigma }}_i\) is changing during the inter-event time, one cannot infer the boundedness of \(|{\tilde{\sigma }}_i|\) from \(\varDelta V_i\le -a_iV_i+b_i\). A further processing is needed.

Because \(\dot{{\tilde{W}}}_i=0\) in \(t\in (t_j,t_{j+1}]\), it is obvious that \(\varTheta V_i=\varDelta V_i+{\tilde{\sigma }}_i^2(t_{j+1})-{\tilde{\sigma }}_i^2(t_j^+)\). Assume \(|{\tilde{\sigma }}_i|\) grows with the fastest speed during the inter-vent time. According to Assumption 1 and (13), it is tenable to assume \(|\dot{{\tilde{\sigma }}}_i|=|{\dot{\sigma }}_i|\le b_{{\dot{\sigma }}_i}\) in \(t\in (t_j,t_{j+1}]\), where \(b_{{\dot{\sigma }}_i}\) is an unknown constant. Thus, the following inequality holds.

$$\begin{aligned} \begin{aligned}&{\tilde{\sigma }}_i^2(t_{j+1})-{\tilde{\sigma }}_i^2(t_j^+)\\&\quad \le 2b_{{\dot{\sigma }}_i}T_{max}|{\tilde{\sigma }}_i(t_j^+)|+b_{{\dot{\sigma }}_i}^2T_{max}^2\\&\quad \le 2b_{{\dot{\sigma }}}T_{max}\sqrt{V_i+\varDelta V_i}+b_{{\dot{\sigma }}_i}^2T_{max}^2. \end{aligned} \end{aligned}$$
(A-4)

Thus, a new interconnected system is obtained as

$$\begin{aligned} \left\{ \begin{aligned} \varDelta V_i&\le -a_iV_i+b_i\\ \varTheta V_i&\le -a_iV_i+2b_{{\dot{\sigma }}_i}T_{max} \sqrt{V_i+\varDelta V_i}\\&\quad +b_{{\dot{\sigma }}_i}^2T_{max}^2+b_i \end{aligned}\right. . \end{aligned}$$
(A-5)

If \(V_i(t_j)>b_i/a_i\), it has \(\varDelta V_i<0\) for the first inequality in (A-5). In this case, the second inequality in (A-5) is transformed to \(\varTheta V_i\le -a_iV_i+2b_{{\dot{\sigma }}_i}T_{max}\sqrt{V_i}+b_{{\dot{\sigma }}_i}^2T_{max}^2+b_i\). By solving this inequality, it has \(\varTheta V_i<0\) for \(V_i(t_j)>(b_{{\dot{\sigma }}_i}T_{max}+\sqrt{b_{{\dot{\sigma }}_i}^2T_{max}^2(1+a_i)+a_ib_i})^2/a_i^2\). Thus, it is concluded that \(\varTheta V_i<0\) for \(V_i(t_j)>\max \{b_i/a_i,(b_{{\dot{\sigma }}_i}T_{max}+\sqrt{b_{{\dot{\sigma }}_i}^2T_{max}^2(1+a_i)+a_ib_i})^2/a_i^2\}\). Because \(V_i(t_j^+)<V_i(t)<V_i(t_{j+1})\) in \(t\in (t_j,t_{j+1}]\), it is inferred that \(V_i(t)\) is bounded all along and is ultimately bounded by \(\max \{b_i/a_i,(b_{{\dot{\sigma }}_i}T_{max}{+}\sqrt{b_{{\dot{\sigma }}_i}^2T_{max}^2(1+a_i)+a_ib_i})^2/a_i^2\}\). The proof is completed.

It is obvious that the larger \(T_{max}\) (namely by increasing \(\mu \)) will lead to the smaller \(a_i\) and the larger ultimate bound of \(V_i\), which suggests the slower learning rate and the worse identification accuracy.

Proof of Lemma 2

For convenience, set \(\zeta =1\) in (17). By subtracting \([\alpha _i,0]^\mathrm {T}\) from (17), it renders

$$\begin{aligned} \left[ \begin{matrix}{\dot{q}}_i\\ {\dot{\eta }}_i\end{matrix}\right] =\left[ \begin{matrix}0&{}1\\ omega^2&{}-2\omega \end{matrix}\right] \left[ \begin{matrix}q_i\\ \eta _i\end{matrix}\right] -\left[ \begin{matrix}{\dot{\alpha }}_i\\ 0\end{matrix}\right] . \end{aligned}$$
(B-1)

Define \(A=[0,1;-\omega ^2,-2\omega ]\). It is calculated that A has two repeated eigenvalues of \(\lambda (A)=-\omega \). Through the Hamilton–Cayley theorem, it can be derived that

$$\begin{aligned} \left\{ \begin{aligned}&a_1(t)\lambda (A)+a_0(t)=e^{\lambda (A)t}\\&a_1(t)=te^{\lambda (A)t} \end{aligned}\right. . \end{aligned}$$
(B-2)

Thus, \(a_0(t)=(1+\omega t)e^{-\omega t}\) and \(a_1(t)=te^{-\omega t}\) are obtained. Ulteriorly, the state transformation matrix of (B-1) in \(t\in (t_j,t_{j+1}]\) is obtained as \(\varPhi (t)=a_1(t-t_j)A+a_0(t-t_j)\). Then, the analytical solution of (B-1) is derived as

$$\begin{aligned} \left[ \begin{matrix}q_i(t)\\ \eta _i(t)\end{matrix}\right]&=\varPhi (t)\left[ \begin{matrix}q_i(t_j^+)\\ \eta _i(t_j)\end{matrix}\right] \nonumber \\&\quad + \int _{t_j}^t\varPhi (\tau )\left[ \begin{matrix}{\dot{\alpha }}_i(t-t_j -\tau )\\ 0\end{matrix}\right] ~\mathrm {d}\tau . \end{aligned}$$
(B-3)

Because all the states are defined in a compact set, it is tenable to assume \(|{\dot{\alpha }}_i(t)|\le b_{{\dot{\alpha }}_i}\), where \(b_{{\dot{\alpha }}_i}\) is an unknown constant. Then, the following inequality can be derived from (B-3).

$$\begin{aligned} \left\{ \begin{aligned} |q_i(t)|&\le |q_i(t_j^+)|(1+\omega (t-t_j))e^{-\omega (t-t_j)}\\&\quad +\left( \frac{2}{\omega }-\frac{2}{\omega }e^{-\omega (t-t_j)} -(t-t_j)e^{-\omega (t-t_j)}\right) b_{{\dot{\alpha }}_i} \\&\quad +|\eta _i(t_j)|(t-t_j)e^{-\omega (t-t_j)}\\ |\eta _i(t)|\le&\,|q_i(t_j^+)|\omega ^2(t-t_j)e^{-\omega (t-t_j)}\\&\quad +|(1-\omega (t-t_j))e^{-\omega (t-t_j)}|\times |\eta _i(t_j)|\\&\quad +(1-e^{-\omega (t-t_j)}-w(t-t_j)e^{-\omega (t-t_j)})b_{{\dot{\alpha }}_i} \end{aligned}\right. . \end{aligned}$$
(B-4)

For (B-4), an assumption is made at first that \(|q_i(t_j^+)|\le \mu _{q_i}+b_{q_i}\) and \(|\eta _i(t_j)|\le \mu _{\eta _i}+b_{{\dot{\alpha }}_i}\), where \(\mu _{q_i}\) and \(\mu _{\eta _i}\) can two arbitrarily small positive constants. For the first inequality in (B-4), it is inferred that \(|q_i(t)|\rightarrow 0\) with \(\omega \rightarrow +\infty \). Thus, there must exist \(\omega =\omega _{q_i}\) such that \(|q_i(t_j+\delta _t)|\le \mu _{q_i}\) holds, where \(\delta _t\) is the minimum inter-event time proved in Section IV. Invoking \(|\varDelta q_i|\le b_{q_i}\), \(|q_i(t_j^+)|\le \mu _{q_i}+b_{q_i}\) holds. For the second inequality in (B-4), it is inferred that \(|\eta _i(t)|\le b_{{\dot{\alpha }}_i}\) with \(\omega \rightarrow +\infty \). Thus, there must exist \(\omega =\omega _{\eta _i}\) such that \(|\eta _i(t_j+\delta _t)|\le \mu _{\eta _i}+b_{{\dot{\alpha }}_i}\) holds. By selecting \(\omega =\max \{\omega _{q_i},\omega _{\eta _i}\}\), this assumption holds.

From the first inequality in (B-4), it can be found that \(|(1+\omega (t-t_j))e^{-\omega (t-t_j)}|<1\), \(|2/\omega -2/\omega e^{-\omega (t-t_j)}-(t-t_j)e^{-\omega (t-t_j)}|<2/\omega \) and \(|(t-t_j)e^{-\omega (t-t_j)}|<1/(\omega e)\). By invoking the above assumption, the first inequality in (B-4) can be transformed to

$$\begin{aligned} |q_i(t)|\le \mu _{q_i}+b_{q_i}+\frac{\mu _{\eta _i}+b_{{\dot{\alpha }}_i}}{\omega e}+\frac{2b_{{\dot{\alpha }}_i}}{\omega }. \end{aligned}$$
(B-5)

Let \({\bar{b}}_{q_i}=\mu _{q_i}+b_{q_i}+(\mu _{\eta _i}+b_{{\dot{\alpha }}_i})/(\omega e)+2b_{{\dot{\alpha }}_i}/\omega \). It is obvious that \({\bar{b}}_{q_i}\rightarrow b_{q_i}\) with \(\omega \rightarrow +\infty \). The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Ni, T. & Wang, J. Event-triggered compound learning tracking control of nonstrict-feedback nonlinear systems in sensor-to-controller channel. Nonlinear Dyn 106, 2259–2276 (2021). https://doi.org/10.1007/s11071-021-06870-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06870-w

Keywords

Navigation