Skip to main content
Log in

Planar dynamics of a dimer on a wave

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the 2D dynamics of a rigid dimer, a dumbbell-shaped extended body, on an elastic surface carrying a harmonic traveling wave. The impact of the dimer with the surface is modeled using Routh’s impact diagram which assumes inelastic normal interaction along with frictional constraint in the tangential direction. The impulse correlation ratio is used while working at double impact. The surface provides a kinematic boundary condition corresponding to the mode of motion. As a result, the dimer exhibits various modes of motion consisting of rolling with or without slip, hopping, and double stick/slide as a function of wave parameters and initial conditions. The dimer drifts through various modes, namely drift and jump–drift, while realizing period-doubling and novel complex/mixed-periodic behavior (different impact periodicity admitted by each ball) with coexisting attractors. Noticeably, the flutter mode, as observed in bouncing dimer problem on rigid surface, appears to be absent in the present system due to the persistent drift. The transport properties of a dimer as a function of initial conditions, surface and geometric parameters bring forth interesting conclusions. This study is expected to be useful in developing and understanding the novel idea of wave-induced transport of elongated granular particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The datasets (for plots) generated during the current study are available from the corresponding author on reasonable request.

References

  1. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78(2), 641 (2006)

    Article  Google Scholar 

  2. Barroso, J.J., Carneiro, M.V., Macau, E.E.N.: Bouncing ball problem: stability of the periodic modes. Phys. Rev. E 79(2), 026206 (2009)

  3. Buguin, A., Brochard, F., de Gennes, P.-G.: Motions induced by asymmetric vibrations. Eur. Phys. J. E 19(1), 31–36 (2006)

    Article  Google Scholar 

  4. Ceanga, V., Hurmuzlu, Y.: A new look at an old problem: Newton’s cradle. J. Appl. Mech. 68(4), 575–583 (2000)

  5. Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65(4), 939–951 (1998)

    Article  Google Scholar 

  6. Daniel, S., Chaudhury, M.K., de Gennes, P.-G.: Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21(9), 4240–4248 (2005)

    Article  Google Scholar 

  7. de Boer, M.P., Luck, D.L., Ashurst, W.R., Maboudian, R., Corwin, A.D., Walraven, J.A., Redmond, J.M.: High-performance surface-micromachined inchworm actuator. J. Microelectromech. Syst. 13(1), 63–74 (2004)

    Article  Google Scholar 

  8. Djerassi, S.: Collision with friction; part a: Newton’s hypothesis. Multibody Syst. Dyn. 21(1), 37 (2008)

  9. Djerassi, S.: Collision with friction; part b: Poisson’s and Stornge’s hypotheses. Multibody Syst. Dyn. 21(1), 55 (2008)

  10. Dong, L., Chaudhury, A., Chaudhury, M.K.: Lateral vibration of a water drop and its motion on a vibrating surface. Eur. Phys. J. E 21(3), 231–242 (2007)

    Article  Google Scholar 

  11. Dorbolo, S., Volfson, D., Tsimring, L., Kudrolli, A.: Dynamics of a bouncing dimer. Phys. Rev. Lett. 95, 044101 (2005)

  12. Everson, R.M.: Chaotic dynamics of a bouncing ball. Phys. D 19(3), 355–383 (1986)

    Article  MathSciNet  Google Scholar 

  13. Fleishman, D., Asscher, Y., Urbakh, M.: Directed transport induced by asymmetric surface vibrations: making use of friction. J. Phys.: Condens. Matter 19(9), 096004 (2007)

  14. Fleishman, D., Filippov, A.E., Urbakh, M.: Directed molecular transport in an oscillating symmetric channel. Phys. Rev. E 69, 011908 (2004)

  15. Goohpattader, P.S., Mettu, S., Chaudhury, M.K.: Stochastic rolling of a rigid sphere in weak adhesive contact with a soft substrate. Eur. Phys. J. E 34(11), 1–11 (2011)

    Article  Google Scholar 

  16. Hagedorn, P., DasGupta, A.: Vibrations and Waves in Continuous Mechanical Systems. Wiley, Chichester (2007)

    Book  Google Scholar 

  17. Hashimoto, Y., Koike, Y., Ueha, S.: Near-field acoustic levitation of planar specimens using flexural vibration. J. Acoust. Soc. Am. 100(4), 2057–2061 (1996)

    Article  Google Scholar 

  18. Hashimoto, Y., Koike, Y., Ueha, S.: Transporting objects without contact using flexural traveling waves. J. Acoust. Soc. Am. 103(6), 3230–3233 (1998)

    Article  Google Scholar 

  19. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84(2), 173–189 (1982)

    Article  MathSciNet  Google Scholar 

  20. Lankarani, H.M.: A Poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains. J. Mech. Des. 122(4), 489–497 (1999)

    Article  Google Scholar 

  21. Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  22. Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. Research Report RR-6718, INRIA (2008)

  23. Luo, A.C.J., Guo, Y.: Vibro-Impact Dynamics. Wiley, Chichester (2013)

    Book  Google Scholar 

  24. Luo, A.C.J., Han, R.P.S.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 10(1), 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  25. Macau, E.E.N., Carneiro, M.V., Barroso, J.J.: Bouncing ball problem: numerical behavior characterization. J. Phys: Conf. Ser. 246(1), 012003 (2010)

  26. Mettu, S., Chaudhury, M.K.: Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis. Langmuir 27(16), 10327–10333 (2011)

    Article  Google Scholar 

  27. Ragulskis, M., Koizumi, K.: Applicability of attractor control techniques for a particle conveyed by a propagating wave. J. Vib. Control 10(7), 1057–1070 (2004)

    Article  MathSciNet  Google Scholar 

  28. Ragulskis, M., Sanjuán, M.A.F.: Transport of particles by surface waves: a modification of the classical bouncer model. New J. Phys. 10(8), 083017 (2008)

  29. Rakshit, S., Chatterjee, A.: Scalar generalization of newtonian restitution for simultaneous impact. Int. J. Mech. Sci. 103, 141–157 (2015)

    Article  Google Scholar 

  30. Ruhela, G., DasGupta, A.: Hopping on a wave: from periodic to chaotic transport. Nonlinear Dyn. 86(3), 1663–1672 (2016)

    Article  MathSciNet  Google Scholar 

  31. Ruhela, G., DasGupta, A.: Motion periodicity and bifurcation of a wave excited hopping ball. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190137 (2019)

  32. Stronge, W.J.: Rigid body collisions with friction. Proc. R. Soc. A Math. Phys. Eng. Sci. 431, 169–181 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Tran, S., Marmottant, P., Thibault, P.: Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels. Appl. Phys. Lett. 101(11), 114103 (2012)

  34. Verma, N., DasGupta, A.: Particle current on flexible surfaces excited by harmonic waves. Phys. Rev. E 88, 052915 (2013)

  35. Viswarupachari, C., DasGupta, A., Khastgir, S.P.: Vibration induced directed transport of particles. Trans. ASME. J. Vibr. Acoust 134(5), 051005 (2012)

  36. Wang, J., Liu, C., Wiercigroch, M., Wang, C., Shui, Y.: Stability of periodic modes and bifurcation behaviors in a bouncing-dimer system. Nonlinear Dyn. 86(3), 1477–1492 (2016)

    Article  Google Scholar 

  37. Wang, J., Liu, C., Zhao, Z.: Nonsmooth dynamics of a 3d rigid body on a vibrating plate. Multibody Syst. Dyn. 32(2), 217–239 (2014)

    Article  MathSciNet  Google Scholar 

  38. Wang, Y., Mason, Matthew T.: Two-Dimensional Rigid-Body Collisions With Friction. Journal of Applied Mechanics 59(3), 635–642 (1992)

  39. Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A Proc. R. Soc. A 465, 3323–3339 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurang Ruhela.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 66 KB)

Supplementary material 2 (rar 55643 KB)

Appendix A

Appendix A

Coefficients of contact forces in equation of motion (Eq. 10) are as follows.

$$\begin{aligned} S_{n1}^{x1}&=\dfrac{-I_2\sin \theta _{s1}-ml^2\sin (2\theta -\theta _{s1})}{8mI}\\ S_{t1}^{x1}&=\dfrac{I_2\cos \theta _{s1}+ml(4r\sin \theta -l\cos (2\theta -\theta _{s1}))}{8mI}\\ S_{n2}^{x1}&=\dfrac{-I_3\sin \theta _{s2}+ml^2\sin (2\theta -\theta _{s2})}{8mI}\\ S_{t2}^{x1}&=\dfrac{I_3\cos \theta _{s2}+ml(4r\sin \theta +l\cos (2\theta -\theta _{s2}))}{8mI}\\ S_{n1}^{y1}&=\dfrac{I_2\cos \theta _{s1}+ml^2\cos (2\theta -\theta _{s1})}{8mI}\\ S_{t1}^{y1}&=\dfrac{I_2\sin \theta _{s1}-ml(4r\cos \theta +l\sin (2\theta -\theta _{s1}))}{8mI}\\ S_{n2}^{y1}&=\dfrac{I_3\cos \theta _{s2}-ml^2\cos (2\theta -\theta _{s2})}{8mI}\\ S_{t2}^{y1}&=\dfrac{I_3\sin \theta _{s2}-ml(4r\cos \theta -l\sin (2\theta -\theta _{s2}))}{8mI}\\ S_{n1}^{\theta }&=-\dfrac{l\cos (\theta -\theta _{s1})}{2I},\ S_{t1}^{\theta }=\dfrac{2r+l\sin (\theta -\theta _{s1})}{2I}\\ S_{n2}^{\theta }&=\dfrac{l\cos (\theta -\theta _{s2})}{2I},\ S_{t2}^{\theta }=\dfrac{2r-l\sin (\theta -\theta _{s2})}{2I} \end{aligned}$$

Coefficients of contact forces in equation of motion (Eq. 11) are as follows.

$$\begin{aligned} S_{n1}^{x2}&=\dfrac{-I_3\sin \theta _{s1}+ml^2\sin (2\theta -\theta _{s1})}{8mI}\\ S_{t1}^{x2}&=\dfrac{I_3\cos \theta _{s1}-ml(4r\sin \theta -l\cos (2\theta -\theta _{s1}))}{8mI}\\ S_{n2}^{x2}&=\dfrac{-I_2\sin \theta _{s2}-ml^2\sin (2\theta -\theta _{s2})}{8mI}\\ S_{t2}^{x2}&=\dfrac{I_2\cos \theta _{s2}-ml(4r\sin \theta +l\cos (2\theta -\theta _{s2}))}{8mI}\\ S_{n1}^{y2}&=\dfrac{I_3\cos \theta _{s1}-ml^2\cos (2\theta -\theta _{s1})}{8mI}\\ S_{t1}^{y2}&=\dfrac{I_3\sin \theta _{s1}+ml(4r\cos \theta +l\sin (2\theta -\theta _{s1}))}{8mI}\\ S_{n2}^{y2}&=\dfrac{I_2\cos \theta _{s2}+ml^2\cos (2\theta -\theta _{s2})}{8mI}\\ S_{t2}^{y2}&=\dfrac{I_2\sin \theta _{s2}+ml(4r\cos \theta -l\sin (2\theta -\theta _{s2}))}{8mI} \end{aligned}$$

where \(I_1=I+\frac{1}{4}ml^2\), \(I_2=8I_1-ml^2=8I+ml^2\) and \(I_3=8I_1-3ml^2=8I-ml^2\).

Note: Appendix B and the simulation videos are given as electronic supplementary material (ESM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhela, G., DasGupta, A. Planar dynamics of a dimer on a wave. Nonlinear Dyn 106, 1711–1737 (2021). https://doi.org/10.1007/s11071-021-06849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06849-7

Keywords

Navigation