Skip to main content
Log in

Pursuit on regular surfaces with application to consensus problems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work we develop geometric and numerical methods to analyze the behavior of a system of organisms or particles under various types of pursuit on a regular surface. We consider different types of pursuit similar to some mechanisms proposed by several authors, although treated in a different way. Using different concepts from diverse areas of mathematics, global and time- invariant relationships between the involved particles in the system are characterized. In order to consider different dynamical behaviors depending on individual positions and velocities we applied our geometric pursuit framework defined on regular surfaces to a specific consensus problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Notes

  1. Locally, system (3) defines a vector field G on TM and its flow is called the geodesic flow on TM where \(t\rightarrow \varphi (t,p,v)\) is the unique trajectory of G which satisfies the initial condition \(\varphi (0,p,v)=(p,v)\).

  2. The diameter D(S) of a surface S is, by definition \(D(S)=\underset{p,q\in S}{\sup } \rho (p,q), \) where \(\rho \) is the intrinsic distance function defined in S.

  3. Couzin et al. identified four dynamical behaviors, one of which is not exhibited in the simulations of our model.

  4. We remind that the model developed by Couzin et al. is in order to investigate the spatial dynamics of animal groups, and they labeled this behavior as swarm in analogy of the motion of insects such as mosquitoes.

References

  1. Aravind, P.K.: A symmetrical pursuit problem on the sphere and the hyperbolic plane. Math. Gaz. 78, 30–36 (1994)

    Article  Google Scholar 

  2. Barton, J.C., Eliezer, C.J.: On pursuit curves. ANZIAM J. 41–3, 358–371 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Behroozi, F., Gagnon, R.: Cyclic pursuit in a plane. J. Math. Phys. 20, 2212–2216 (1979)

    Article  MathSciNet  Google Scholar 

  4. Bernhart, A.: Curves of pursuit. Scr. Math. 20, 125–141 (1954)

    MathSciNet  MATH  Google Scholar 

  5. Bernhart, A.: Curves of pursuit-II. Scr. Math. 23, 49–65 (1957)

    MathSciNet  MATH  Google Scholar 

  6. Bernhart, A.: Polygons of pursuit. Scr. Math. 24, 23–50 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Bernhart, A.: Curves of general pursuit. Scr. Math. 24, 189–206 (1959)

    MathSciNet  MATH  Google Scholar 

  8. Chung, C.F., Furukawa, T.: A reachability-based strategy for the time-optimal control of autonomous pursuers. Eng. Optim. 40, 67–93 (2008)

    Article  MathSciNet  Google Scholar 

  9. Huang, H., Zhang, W., Ding, J., Stipanovic, D.M., Tomlin, C.J.: Guaranteed decentralized pursuit-evasion in the plane with multiple pursuers. CDC-ECE. 4835–4840 (2011)

  10. Klamkin, M.S., Newman, D.J.: Cyclic pursuit or “the three bugs problem”. Am. Math. Mon. 78, 631–639 (1971)

  11. Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit. IEEE Trans. Autom. Control 49, 1963–1974 (2004)

    Article  MathSciNet  Google Scholar 

  12. Richardson, T.J.: Non-mutual captures in cyclic pursuit. Ann. Math. Artif. Intell. 31, 127–146 (2001)

    Article  MathSciNet  Google Scholar 

  13. Sinha, A., Ghose, D.: Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents. IEEE Trans. Autom. Control 51, 1819–1824 (2006)

    Article  MathSciNet  Google Scholar 

  14. Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I.: Asymptotic Approaches in Nonlinear Dynamics. New Trends and Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  15. Archibald, R.C., Manning, H.P.: Remarks and historical notes [on the pursuit problem]. Am. Math. Mon. 28, 91–93 (1921)

    Article  Google Scholar 

  16. Ren, W., Beard, R.W., McLain, T.W.: Coordination variables and consensus building in multiple vehicle systems. Coop. Control. 37, 171–188 (2005)

    MathSciNet  Google Scholar 

  17. Guibas, L.J., Latombe, J.C., LaValle, S.M., Lin, D., Motwani, R.: A visibility-based pursuit-evasion problem. Int. J. Comput. Geom. Appl. 9, 471–493 (1999)

    Article  MathSciNet  Google Scholar 

  18. Ho, Y., Bryson, A., Baron, S.: Differential games and optimal pursuit-evasion strategies. IEEE Trans. Autom. Control 10, 385–389 (1965)

    Article  MathSciNet  Google Scholar 

  19. Nahin, P.J.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012)

    Book  Google Scholar 

  20. Parsons, T.D.: Pursuit-evasion in a graph. Theory Appl. Gr. 426–441 (1978)

  21. Pereira, T.: Stability of Synchronized Motion in Complex Networks. Lecture Notes, Summer School at. University of Sau Paulo, Brazil (2011)

  22. Schenato, L., Oh, S., Sastry, S., Bose, P.: Swarm coordination for pursuit evasion games using sensor networks. Robotics and Automation. IEEE. 2493–2498 (2005)

  23. Yates, R.C.: Pursuit Curve. A Handbook on Curves and Their Properties. Ann Arbor, MI, pp. 170–171 (1952)

  24. Kamimura, A., Ohira, T.: Group chase and escape. New J. Phys. 12(053013), 1–13 (2010)

    MATH  Google Scholar 

  25. Jeanson, R., Dussutour, A., Fourcassié, V.: Key factors for the emergence of collective decision in invertebrates. Front. Neurosci. 6, 1–15 (2012)

    Article  Google Scholar 

  26. Janosov, M., Virágh, C., Vásárhelyi, G., Vicsek, T.: Group chasing tactics: how to catch a faster prey. New J. Phys. 19(053003), 1–16 (2017)

    Google Scholar 

  27. Reynolds, C.W.: Flocks, herds and schools: Dtributed behavioral model. ACM SIGGRAPH Comput. Gr. 21, 25–34 (1987)

    Article  Google Scholar 

  28. Solis, F.J., Yebra, C.: Modeling the pursuit in natural systems: a relaxed oscillation approach. Math. Comput. Model. 52, 956–961 (2010)

    Article  MathSciNet  Google Scholar 

  29. Solis, F.J., Yebra, C.: Cyclic pursuit problems in the two dimensional sphere. Appl. Math. Comput. 244, 91–100 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  31. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Courier Dover Publications, New York (2016)

    MATH  Google Scholar 

  32. O’Neill, B.: Elementary Differential Geometry. Academic Press, New York (1966)

  33. Song, Q., Cao, J., Yu, W.: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Syst. Control Lett. 59(9), 553–562 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wei, N., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3), 209–217 (2010)

  35. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  36. Cziròk, A., Vicsek, M., Vicsek, T.: Collective motion of organisms in three dimensions. Physica A 264, 299–304 (1999)

    Article  Google Scholar 

  37. Cziròk, A., Stanley, H.E., Vicsek, T.: Spontaneously ordered motion of self-propelled particles. J. Phys. A: Math. Gen. 30, 1375–1385 (1997)

    Article  Google Scholar 

  38. Kibangou, A.Y.: Graph Laplacian based matrix design for finite-time distributed average consensus. In: American Control Conference. 1901–1906 (2012)

Download references

Acknowledgements

This work was supported by CONACYT Project CB2016-286437

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Solis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by CONACyT, Mexico project CB2016-286437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solis, F.J., Yebra, C. Pursuit on regular surfaces with application to consensus problems. Nonlinear Dyn 105, 3423–3438 (2021). https://doi.org/10.1007/s11071-021-06800-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06800-w

Keywords

Navigation