Skip to main content
Log in

Sway and disturbance rejection control for varying rope tower cranes suffering from friction and unknown payload mass

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Tower cranes are well-known underactuated systems, where the design of controllers for them with time-varying rope length was weak in the past because of their complex dynamic characteristic. The payload oscillation will become worse when the jib slew angle, the trolley position and the rope length are changed simultaneously. The proposed method is designed based on robust adaptive sliding mode control via tracking nonzero initial reference trajectories, in which frictions and lumped disturbances in the crane system are eliminated, and unknown payload mass is effectively estimated online. Lyapunov technique is combined with LaSalle’s invariance theorem to design controller and analyze stability. Various and strict simulations are applied, which validate the effectiveness and extreme robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu, W., Chen, S., Huang, H.: Double closed-loop integral terminal sliding mode for a class of underactuated systems based on sliding mode observer. Int. J. Control Autom. Syst. 18, 339–350 (2020)

    Article  Google Scholar 

  2. Seifried, R.: Dynamics of underactuated multibody systems: Modeling, control and optimal design. Springer International Publishing, Cham (2014)

    Book  MATH  Google Scholar 

  3. Yabuno, H., Kobayashi, S.: Motion control of a flexible underactuated manipulator using resonance in a flexible active arm. Int. J. Mech. Sci. 174, (2020)

    Article  Google Scholar 

  4. Yin, H., Chen, Y., Huang, J.H.: L\({\ddot{{\rm u}}}\), Tackling mismatched uncertainty in robust constraint-following control of underactuated systems. Inf. Sci. 520, 337–352 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Montoya, O.D., Gil-Gonzalez, W.: Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach. Eng. Sci. Technol. Int. J. 23, 21–29 (2020)

    Google Scholar 

  6. Zhang, S., He, X., Zhu, H., Chen, Q., Feng, Y.: Partially saturated coupled-dissipation control for underactuated overhead cranes. Mech. Syst. Signal Process. 136, (2020)

    Article  Google Scholar 

  7. Chereji, E., Radac, M., Szedlak-Stinean, A.: Sliding mode control algorithms for anti-lock braking systems with performance comparisons. Algorithms 14, 2 (2021)

    Article  MathSciNet  Google Scholar 

  8. Liu, J., Sun, M., Chen, Z., Sun, Q.: Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dyn. 99, 2785–2799 (2020)

    Article  MATH  Google Scholar 

  9. Wang, S., Tao, L., Chen, Q., Na, J., Ren, X.: USDE-Based sliding mode control for servo mechanisms with unknown system dynamics. IEEE/ASME Trans. Mechatron. 25, 1056–1066 (2020)

    Article  Google Scholar 

  10. Pappalardo, C.M., Guida, D.: On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots. Arch. Appl. Mech. 89, 669–698 (2019)

    Article  Google Scholar 

  11. Ding, F., Huang, J., Wang, Y., Zhang, J., He, S.: Sliding mode control with an extended disturbance observer for a class of underactuated system in cascaded form. Nonlinear Dyn. 90, 2571–2582 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ashrafiuon, H., Erwin, R.S.: Sliding mode control of underactuated multibody systems and its application to shape change control. Int. J. Control 81, 1849–1858 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maghsoudi, M.J., Mohamed, Z., Husain, A.R., Tokhi, M.O.: An optimal performance control scheme for a 3D crane. Mech. Syst. Signal Process. 66–67, 756–768 (2016)

    Article  Google Scholar 

  14. Tuan, L.A.: Fractional-order fast terminal back-stepping sliding mode control of crawler cranes. Mech. Mach. Theory 137, 297–314 (2019)

    Article  Google Scholar 

  15. Lu, B., Fang, Y., Sun, N.: Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics 47, 116–125 (2017)

    Article  Google Scholar 

  16. Chen, H., Fang, Y., Sun, N.: An adaptive tracking control method with swing suppression for 4-DOF tower crane systems. Mech. Syst. Signal Process. 123, 426–442 (2019)

    Article  Google Scholar 

  17. Gao, J., Wang, L., Gao, R., Huang, J.: Adaptive control of uncertain underactuated cranes with a non-recursive control scheme. J. Franklin Inst. 356, 11305–11317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, M., Zhang, Y., Ouyang, H., Ma, C., Cheng, X.: Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. Nonlinear Dyn. 99, 2727–2741 (2020)

    Article  MATH  Google Scholar 

  19. Le, A.T., Lee, S.: 3D cooperative control of tower cranes using robust adaptive techniques. J. Franklin Inst. 354, 8333–8357 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ouyang, H., Wang, J., Zhang, G., Mei, L., Deng, X.: Novel adaptive hierarchical sliding mode control for trajectory tracking and load sway rejection in double-pendulum overhead cranes. IEEE Access 7, 10353–10361 (2019)

    Article  Google Scholar 

  21. Zhang, S., He, X., Chen, Q.: Energy coupled-dissipation control for 3-dimensional overhead cranes. Nonlinear Dyn. 99, 2097–2107 (2020)

    Article  Google Scholar 

  22. Sun, N., Yang, T., Fang, Y., Lu, B., Qian, Y.: Nonlinear motion control of underactuated three-dimensional boom cranes with hardware experiments. IEEE Trans. Ind. Inform. 14, 887–897 (2018)

    Article  Google Scholar 

  23. Ho, T.D., Terashima, K.: Robust control designs of payloads skew rotation in a boom crane system. IEEE Trans. Control Syst. Technol. 27, 1608–1621 (2019)

    Article  Google Scholar 

  24. Wu, X., Xu, K., He, X.: Disturbance-observer-based nonlinear control for overhead cranes subject to uncertain disturbances. Mech. Syst. Signal Process. 139, (2020)

    Article  Google Scholar 

  25. Golovin, I., Palis, S.: Robust control for active damping of elastic gantry crane vibrations. Mech. Syst. Signal Process. 121, 264–278 (2019)

    Article  Google Scholar 

  26. Kolar, B., Rams, H., Schlacher, K.: Time-optimal flatness based control of a gantry crane. Control Eng. Pract. 60, 18–27 (2017)

    Article  Google Scholar 

  27. Hamdy, M., Shalaby, R., Sallam, M.: Experimental verification of a hybrid control scheme with chaotic whale optimization algorithm for nonlinear gantry crane: a comparative study. ISA Trans. 98, 418–433 (2020)

    Article  Google Scholar 

  28. Rincon, L., Kubota, Y., Venture, G., Tagawa, Y.: Inverse dynamic control via simulation of feedback control by artificial neural networks for a crane system. Control Eng. Pract. 94, (2020)

    Article  Google Scholar 

  29. Tuan, L.A., Cuong, H.M., Trieu, P.V., Nho, L.C., Thuan, V.D., Anh, L.V.: Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash. Mech. Syst. Signal Process. 112, 233–250 (2018)

    Article  Google Scholar 

  30. Ramli, L., Mohamed, Z., Efe, M., Lazim, I.M., Jaafar, H.I.: Efficient swing control of an overhead crane with simultaneous payload hoisting and external disturbances. Mechanical Systems and Signal Processing 135, (2020)

    Article  Google Scholar 

  31. Li, X., Peng, X., Geng, Z.: Anti-swing control for 2-D under-actuated cranes with load hoisting/lowering: a coupling-based approach. ISA Trans. 95, 372–378 (2019)

    Article  Google Scholar 

  32. Zhang, Z., Wu, Y., Wu, Y., Huang, J., Huang, J.: Differential-flatness-based finite-time anti-swing control of underactuated crane systems. Nonlinear Dyn. 87, 1749–1761 (2017)

    Article  MATH  Google Scholar 

  33. Sun, N., Fang, Y., Chen, H., He, B.: Adaptive nonlinear crane control with load hoisting/lowering and unknown parameters: design and experiments. IEEE/ASME Trans. Mechatron. 20, 2107–2119 (2015)

    Article  Google Scholar 

  34. Lu, B., Fang, Y., Sun, N.: Enhanced-coupling adaptive control for double-pendulum overhead cranes with payload hoisting and lowering. Automatica 101, 241–251 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maghsoudi, M.J., Ramli, L., Sudin, S., Mohamed, Z., Husain, A.R., Wahid, H.: Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting. Mech. Syst. Signal Process. 123, 466–482 (2019)

    Article  Google Scholar 

  36. Peng, J., Xu, W., Yang, T., Hu, Z., Liang, B.: Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot. Nonlinear Dyn. 101, 233–253 (2020)

    Article  Google Scholar 

  37. Yang, T., Sun, N., Chen, H., Fang, Y.: Observer-Based nonlinear control for tower cranes suffering from uncertain friction and actuator constraints with experimental verification. IEEE Trans. Ind. Electron. 68, 6192–6204 (2021)

    Article  Google Scholar 

  38. Zhang, M., Zhang, Y., Ji, B., Ma, C., Cheng, X.: Adaptive sway reduction for tower crane systems with varying cable lengths. Autom. Constr. 119, (2020)

    Article  Google Scholar 

  39. Sun, N., Wu, Y., Chen, H., Fang, Y.: Antiswing cargo transportation of underactuated tower crane systems by a nonlinear controller embedded with an integral term. IEEE Trans. Autom. Sci. Eng. 16, 1387–1398 (2019)

    Article  Google Scholar 

  40. Zhou, X., Li, X.: A finite-time robust adaptive sliding mode control for electro-optical targeting system with friction compensation. IEEE Access 7, 166318–166328 (2019)

    Article  MathSciNet  Google Scholar 

  41. Sun, N., Fang, Y., Zhang, Y., Ma, B.: A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Trans. Mechatron. 17, 166–173 (2012)

    Article  Google Scholar 

  42. Sun, N., Zhang, X., Fang, Y., Yuan, Y.: Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory Appl. 6, 1410–1423 (2012)

    Article  MathSciNet  Google Scholar 

  43. Hoang, N.Q., Lee, S., Kim, H., Moon, S.: Trajectory planning for overhead crane by trolley acceleration shaping. J. Mech. Sci. Technol. 28, 2879–2888 (2014)

    Article  Google Scholar 

  44. Han, J.: Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties. National Defense Industry Press, Beijing (2008)

    Google Scholar 

  45. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ, USA (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grants 51707092 and 61703202 and in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant SJCX21_0480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The detailed expressions of (8) are as follows:

$$\begin{aligned}&\varvec{M}( {\varvec{q}})\ddot{ {\varvec{q}}} + {\varvec{C}}( {\varvec{q}}, \dot{ {\varvec{q}}})\dot{ {\varvec{q}}} + {\varvec{G}}( {\varvec{q}}) = {\varvec{U}} - {{\varvec{F}}}_s(\dot{ {\varvec{q}}}) + {\varvec{D}}, \nonumber \\&\varvec{M}( {\varvec{q}}) = \left[ \begin{array}{l} {m_{11}}\;{m_{12}}\;{m_{13}}\;{m_{14}}\;{m_{15}}\\ {m_{21}}\;{m_{22}}\;{m_{23}}\;{m_{24}}\;{m_{25}}\\ {m_{31}}\;{m_{32}}\;{m_{33}}\;{m_{34}}\;{m_{35}}\\ {m_{41}}\;{m_{42}}\;{m_{43}}\;{m_{44}}\;{m_{45}}\\ {m_{51}}\;{m_{52}}\;{m_{53}}\;{m_{54}}\;{m_{55}} \end{array} \right] \; ,\nonumber \\&{m_{11}} = {J_0} + m{x^2} + {M_t}{x^2} + m{l^2} - m{l^2}{C_1}^2{C_2}^2\nonumber \\&+ 2mxl{C_2}{S_1},{m_{12}} = - ml{S_2},{m_{13}} = mx{S_2},\nonumber \\&{m_{14}} = - m{l^2}{C_1}{C_2}{S_2},{m_{15}} = m{l^2}{S_1} + mxl{C_2},\nonumber \\&{m_{21}} = - ml{S_2},{m_{22}} = {M_t} + m,{m_{23}} = m{C_2}{S_1},\nonumber \\&{m_{24}} = ml{C_1}{C_2},{m_{25}} = - ml{S_1}{S_2},{m_{31}} = mx{S_2},\nonumber \\&{m_{32}} = m{C_2}{S_1},{m_{33}} = m,{m_{34}} = {m_{35}} = 0,\nonumber \\&{m_{41}} = - m{l^2}{C_1}{C_2}{S_2},{m_{42}} = ml{C_1}{C_2},{m_{43}} = 0,\nonumber \\&{m_{44}} = m{l^2}{C_2}^2,{m_{45}} = 0,{m_{51}} = m{l^2}{S_1} + mxl{C_2},\nonumber \\&{m_{52}} = - ml{S_1}{S_2},{m_{53}} = {m_{54}} = 0,{m_{55}} = m{l^2},\nonumber \\&{\varvec{C}}( {\varvec{q}},\dot{ {\varvec{q}}}) = \left[ \begin{array}{l} {c_{11}}\;{c_{12}}\;{c_{13}}\;{c_{14}}\;{c_{15}}\\ {c_{21}}\;{c_{22}}\;{c_{23}}\;{c_{24}}\;{c_{25}}\\ {c_{31}}\;{c_{32}}\;{c_{33}}\;{c_{34}}\;{c_{35}}\\ {c_{41}}\;{c_{42}}\;{c_{43}}\;{c_{44}}\;{c_{45}}\\ {c_{51}}\;{c_{52}}\;{c_{53}}\;{c_{54}}\;{c_{55}} \end{array} \right] ,\nonumber \\&{c_{11}} = mx\dot{x} + {M_t}x\dot{x} + ml{C_2}{S_1}\dot{x} + ml\dot{l}\nonumber \\&- ml{C_1}^2{C_2}^2\dot{l} + mx{C_2}{S_1}\dot{l} + m{l^2}{C_1}{C_2}^2{S_1}{{{\dot{\theta }} }_1}\nonumber \\&+ mxl{C_1}{C_2}{{{\dot{\theta }} }_1} + m{l^2}{C_1}^2{C_2}{S_2}{{{\dot{\theta }} }_2} - mxl{S_1}{S_2}{{{\dot{\theta }} }_2},\nonumber \\&{c_{12}} = mx{\dot{\alpha }} + {M_t}x{\dot{\alpha }} + ml{C_2}{S_1}{\dot{\alpha }} ,{c_{13}} = ml{\dot{\alpha }} \nonumber \\&- ml{C_1}^2{C_2}^2{\dot{\alpha }} + mx{C_2}{S_1}{\dot{\alpha }} - ml{C_1}{C_2}{S_2}{{{\dot{\theta }} }_1}\nonumber \\&+ mx{C_2}{{{\dot{\theta }} }_2} + ml{S_1}{{{\dot{\theta }} }_2},{c_{14}} = m{l^2}{C_1}{C_2}^2{S_1}{\dot{\alpha }} \nonumber \\&+ mxl{C_1}{C_2}{\dot{\alpha }} - ml{C_1}{C_2}{S_2}\dot{l} + m{l^2}{C_2}{S_1}{S_2}{{{\dot{\theta }} }_1}\nonumber \\&+ m{l^2}{C_1}{{{\dot{\theta }} }_2} - m{l^2}{C_1}{C_2}^2{{{\dot{\theta }} }_2},\nonumber \\&{c_{15}} = m{l^2}{C_1}^2{C_2}{S_2}{\dot{\alpha }} - mxl{S_1}{S_2}{\dot{\alpha }} + mx{C_2}\dot{l}\nonumber \\&+ ml{S_1}\dot{l} + m{l^2}{C_1}{{{\dot{\theta }} }_1} - m{l^2}{C_1}{C^2}_2{{{\dot{\theta }} }_1}\nonumber \\&- mxl{S_2}{{{\dot{\theta }} }_2},{c_{21}} = - mx{\dot{\alpha }} - Mx{\dot{\alpha }} \nonumber \\&- ml{C_2}{S_1}{\dot{\alpha }} - m{S_2}\dot{l} - ml{C_2}{{{\dot{\theta }} }_2},{c_{22}} = 0,\nonumber \\&{c_{23}} = - m{S_2}{\dot{\alpha }} + m{C_1}{C_2}{{{\dot{\theta }} }_1} - m{S_1}{S_2}{{{\dot{\theta }} }_2},\nonumber \\&{c_{24}} = m{C_1}{C_2}\dot{l} - ml{C_2}{S_1}{{{\dot{\theta }} }_1} - ml{C_1}{S_2}{{{\dot{\theta }} }_2},\nonumber \\&{c_{25}} = - ml{C_2}{\dot{\alpha }} - m{S_1}{S_2}\dot{l} - ml{C_1}{S_2}{{{\dot{\theta }} }_1}\nonumber \\&- ml{C_2}{S_1}{{{\dot{\theta }} }_2},{c_{31}} = - ml{\dot{\alpha }} + ml{C_1}^2{C_2}^2{\dot{\alpha }} \nonumber \\&- mx{C_2}{S_1}{\dot{\alpha }} + m{S_2}\dot{x} + ml{C_1}{C_2}{S_2}{{{\dot{\theta }} }_1} - ml{S_1}{{{\dot{\theta }} }_2},\nonumber \\&{c_{32}} = m{S_2}{\dot{\alpha }} ,{c_{33}} = 0,{c_{34}} = ml{C_1}{C_2}{S_2}{\dot{\alpha }} \nonumber \\&- ml{C_2}^2{{{\dot{\theta }} }_1},{c_{35}} = - ml{S_1}{\dot{\alpha }} - ml{{{\dot{\theta }} }_2},\nonumber \\&{c_{41}} = - m{l^2}{C_1}{C_2}^2{S_1}{\dot{\alpha }} - mxl{C_1}{C_2}{\dot{\alpha }} \nonumber \\&- ml{C_1}{C_2}{S_2}\dot{l} - m{l^2}{C_1}{C_2}^2{{{\dot{\theta }} }_2},{c_{42}} = 0,\nonumber \\&{c_{43}} = - ml{C_1}{C_2}{S_2}{\dot{\alpha }} + ml{C_2}^2{{{\dot{\theta }} }_1},\nonumber \\&{c_{44}} = ml{C_2}^2\dot{l} - m{l^2}{C_2}{S_2}{{{\dot{\theta }} }_2},\nonumber \\&{c_{45}} = - m{l^2}{C_1}{C_2}^2{\dot{\alpha }} - m{l^2}{C_2}{S_2}{{{\dot{\theta }} }_1},\nonumber \\&{c_{51}} = - m{l^2}{C_1}^2{C_2}{S_2}{\dot{\alpha }} + mlx{S_1}{S_2}{\dot{\alpha }} + ml{C_2}\dot{x}\nonumber \\&+ ml{S_1}\dot{l} + m{l^2}{C_1}{C_2}^2{{{\dot{\theta }} }_1},{c_{52}} = ml{C_2}{\dot{\alpha }} ,\nonumber \\&{c_{53}} = ml{{{\dot{\theta }} }_2} + ml{S_1}{\dot{\alpha }} ,{c_{54}} = m{l^2}{C_1}{C_2}^2{\dot{\alpha }} \nonumber \\&+ m{l^2}{C_2}{S_2}{{{\dot{\theta }} }_1},{c_{55}} = ml\dot{l} ,\nonumber \\&{\varvec{G}}( {\varvec{q}}) = {[g_1\;g_2\; g_3\;g_4\;g_5]^T},\nonumber \\&g_1=0,g_2=0,g_3= - mg{C _1}{C _2},g_4=mgl{C _2}{S _1},\nonumber \\&g_5=mgl{C _1}{S _2}. \end{aligned}$$
(54)

Appendix B

The detailed terms in (13) and (14) are shown as follows:

$$\begin{aligned}&{\varvec{\varGamma }} ( {\varvec{q}},\dot{ {\varvec{q}}}) = {[{a_1}\;{a_2}\;{a_3}\;{a_4}\;{a_5}]^T},\nonumber \\&{a_1} = \frac{{ - 2{M_t}{\dot{\alpha }} \dot{x}x}}{{{M_t}{x^2} + {J_0}}},{a_2} = x{{{\dot{\alpha }} }^2},\nonumber \\&{a_3} =\frac{1}{{{{M_t}{x^2} + {J_0}}}} ({M_t}{{{\dot{\theta }} }_2}^2l{x^2} + {M_t}{{{\dot{\alpha }} }^2}l{x^2} + {J_0}{{{\dot{\theta }} }_2}^2lm\nonumber \\&+ {J_0}{{{\dot{\alpha }} }^2}l + {M_t}{{{\dot{\theta }} }_1}^2l{x^2}{C_2}^2 + {J_0}{{{\dot{\theta }} }_1}^2l{C_2}^2\nonumber \\&- 2{J_0}{\dot{\alpha }} \dot{x}{S_2} - 2{M_t}{{{\dot{\theta }} }_1}{\dot{\alpha }} l{x^2}{C_1}{C_2}{S_2}\nonumber \\&+ 2{M_t}{{{\dot{\theta }} }_2}{\dot{\alpha }} l{x^2}{S_1} + 2{J_0}{{{\dot{\theta }} }_2}{\dot{\alpha }} l{S_1}\nonumber \\&- {M_t}{{{\dot{\alpha }} }^2}l{x^2}{C_1}^2{C_2}^2 - {J_0}{{{\dot{\alpha }} }^2}l{C_1}^2{C_2}^2\nonumber \\&- 2{J_0}{{{\dot{\theta }} }_1}{\dot{\alpha }} l{C_1}{C_2}{S_2}),\nonumber \nonumber \\&{a_4} =\frac{1}{{{l{C_2}({M_t}{x^2} + {J_0})}}}( - {M_t}g{x^2}{S_1} - {J_0}g{S_1} \nonumber \\&- 2{M_t}{{{\dot{\theta }} }_1}\dot{l}{x^2}{C_2}- 2{J_0}{{{\dot{\theta }} }_1}\dot{l}{C_2} + 2{M_t}{\dot{\alpha }} \dot{l}{x^2}{C_1}{S_2}\nonumber \\&+ 2{J_0}{\dot{\alpha }} \dot{l}{C_1}{S_2} + 2{M_t}{{{\dot{\theta }} }_1}{{{\dot{\theta }} }_2}l{x^2}{S_2}\nonumber \\&+ 2{J_0}{{{\dot{\theta }} }_1}{{{\dot{\theta }} }_2}l{S_2} - 2{M_t}{\dot{\alpha }} \dot{x}lx{C_1}{S_2}\nonumber \\&+ {M_t}{{{\dot{\alpha }} }^2}l{x^2}{C_1}{C_2}{S_1} + {J_0}{{{\dot{\alpha }} }^2}l{C_1}{C_2}{S_1}\nonumber \\&+ 2{M_t}{{{\dot{\theta }} }_2}{\dot{\alpha }} l{x^2}{C_1}{C_2} + 2{J_0}{{{\dot{\theta }} }_2}{\dot{\alpha }} l{C_1}{C_2}),\nonumber \\&{a_5} =\frac{1}{ {{l({M_t}{x^2} + {J_0})}}} ( - 2{M_t}{{{\dot{\theta }} }_2}\dot{l}{x^2}- 2{J_0}{\dot{\alpha }} \dot{x}{C_2}\nonumber \\&- 2{M_t}{{{\dot{\theta }} }_1}{\dot{\alpha }} l{x^2}{C_1}{C_2}^2 - {M_t}{{{\dot{\theta }} }_1}^2l{x^2}{S_2}{C_2}\nonumber \\&- {J_0}{{{\dot{\theta }} }_1}^2l{S_2}{C_2} - 2{M_t}{\dot{\alpha }} \dot{l}{x^2}{S_1}\nonumber \\&- 2{J_0}{{{\dot{\theta }} }_1}{\dot{\alpha }} l{C_1}{C_2}^2\nonumber \\&- 2{J_0}{{{\dot{\theta }} }_2}\dot{l} + {M_t}{{{\dot{\alpha }} }^2}l{x^2}{C_1}^2{C_2}{S_2}\nonumber \\&- {M_t}g{x^2}{C_1}{S_2} + 2{M_t}{\dot{\alpha }} \dot{x}lx{S_1}\nonumber \\&- 2{J_0}{\dot{\alpha }} \dot{l}{S_1} + {J_0}{{{\dot{\alpha }} }^2}l{C_1}^2{C_2}{S_2}) , \end{aligned}$$
(55)
$$\begin{aligned}&{\varvec{\varPhi }} ( {\varvec{q}}) = {\left[ \begin{array}{l} {b_{11}}\;{b_{21}}\;{b_{31}}\;{b_{41}}\;{b_{51}}\\ {b_{12}}\;{b_{22}}\;{b_{32}}\;{b_{42}}\;{b_{52}}\\ {b_{13}}\;{b_{23}}\;{b_{33}}\;{b_{43}}\;{b_{53}} \end{array} \right] ^T},\nonumber \\&{b_{11}} = \frac{1}{{{M_t}{x^2} + {J_0}}},{b_{12}} = 0,{b_{13}} = \frac{{ - x{S_2}}}{{{M_t}{x^2} + {J_0}}},\nonumber \\&{b_{21}} = 0,{b_{22}} = \frac{1}{{{M_t}}},{b_{23}} = \frac{{ - {C_2}{S_1}}}{{{M_t}}},\nonumber \\&{b_{31}} = \frac{{ - x{S_2}}}{{{M_t}{x^2} + {J_0}}},{b_{32}} = \frac{{ - {S_1}{C_2}}}{{{M_t}}},\nonumber \\&{b_{33}} = \frac{1}{{{{M_t}m({M_t}{x^2} + {J_0})}}}( {M_t}^2{x^2} + {J_0}m{C_2}^2\nonumber \\&- {J_0}m{C_1}^2{C_2}^2 - {M_t}m{x^2}{C_1}^2{C_2}^2\nonumber \\&+ {J_0}{M_t} + {M_t}m{x^2}),\nonumber \\&{b_{41}} = \frac{{{C_1}{S_2}}}{{{C_2}({M_t}{x^2} + {J_0})}},{b_{42}} = \frac{{ - {C_1}}}{{{M_t}l{C_2}}},\nonumber \\&{b_{43}} = \frac{C_1}{{{{M_t}l{C_2}({M_t}{x^2} + {J_0})}}}( - {M_t}lx + {J_0}{C_2}{S_1}\nonumber \\&+ {M_t}lx{C_2}^2 + {M_t}{x^2}{C_2}{S_1})\nonumber \\&{b_{51}} = \frac{{ - x{C_2} - l{S_1}}}{{l({M_t}{x^2} + {J_0})}},{b_{52}} = \frac{{{S_1}{S_2}}}{{{M_t}l}},\nonumber \\&{b_{53}} = \frac{{S_2}}{{{{M_t}l({M_t}{x^2} + {J_0})}}}(- {J_0}{C_2} + {J_0}{C_1}^2{C_2}\nonumber \\&+ {M_t}{x^2}{C_1}^2{C_2} + {M_t}lx{S_1}). \end{aligned}$$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Yu, L., Ouyang, H. et al. Sway and disturbance rejection control for varying rope tower cranes suffering from friction and unknown payload mass. Nonlinear Dyn 105, 3149–3165 (2021). https://doi.org/10.1007/s11071-021-06793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06793-6

Keywords

Navigation