Skip to main content
Log in

Hierarchical predefined-time control for time-varying formation tracking of multiple heterogeneous Euler–Lagrange agents

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the time-varying formation tracking (TVFT) problem of multiple heterogeneous Euler–Lagrange agents (MHELAs) with predefined-time convergence ability under directed interaction topology, where both the parametric uncertainties and external disturbances are taken into account. A new predefined-time hierarchical control (PTHC) algorithm is designed to solve the aforementioned challenging problem. Specifically, the TBG-based distributed estimator algorithm utilizing the time base generator (TBG) is firstly designed to estimate the states of the virtual leader in a predefined time. Besides, based on the obtained estimators, the predefined-time controller is presented to accomplish the robust time-varying formation tracking of the MHELAs in the local control layer. By employing the Lyapunov and Lagrange stability theory, the sufficient conditions for achieving the desired performance of the MHELAs are derived. Eventually, numerical simulations are performed to illustrate that the aforementioned theoretical results for MHELAs are effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  2. Zhu, E., Pang, J., Sun, N., Gao, H., Sun, Q., Chen, Z.: Airship horizontal trajectory tracking control based on active disturbance rejection control (ADRC). Nonlinear Dyn. 75, 725–734 (2014)

    Article  MathSciNet  Google Scholar 

  3. Brewer, J.M., Tsiotras, P.: Partial attitude synchronization for networks of underactuated spacecraft. Automatica 97, 27–37 (2018)

    Article  MathSciNet  Google Scholar 

  4. Peng, Z., Wang, D., Li, T., Wu, Z.: Leaderless and leader-follower cooperative control of multiple marine surface vehicles with unknown dynamics. Nonlinear Dyn. 74, 95–106 (2013)

    Article  MathSciNet  Google Scholar 

  5. Wang, B.: Cluster event-triggered tracking cooperative and formation control for multivehicle systems: an extended magnification region condition. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2919664

    Article  Google Scholar 

  6. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cheng, J., Park, J.H., Karimi, H.R., Shen, H.: A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals. IEEE Trans. Cybern. 48(8), 2232–2244 (2017)

    Google Scholar 

  8. Wang, A., Dong, T., Liao, X.: Distributed optimal consensus algorithms in multi-agent systems. Neurocomputing 339, 26–35 (2019)

    Article  Google Scholar 

  9. Liu, Z.W., Wen, G., Yu, X., Guan, Z.H., Huang, T.: Delayed impulsive control for consensus of multi-agent systems with switching communication graphs. IEEE Trans. Cybern. 50(7), 3045–3055 (2020)

    Article  Google Scholar 

  10. Liang, C.D., Wang, L., Yao, X.Y., Liu, Z.W., Ge, M.F.: Multi-target tracking of networked heterogeneous collaborative robots in task space. Nonlinear Dyn. 97(2), 1159–1173 (2019)

    Article  Google Scholar 

  11. Wu, Y.D., Ge, M.F., Ding, T.F., Chen, C.Y., Ling, G.: Task-space bipartite tracking of networked robotic systems via hierarchical finite-time control. Nonlinear Dyn. 100, 3469–3483 (2020)

    Article  Google Scholar 

  12. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)

    Article  MathSciNet  Google Scholar 

  13. Li, Z., Ren, W., Liu, X., Fu, M.: Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust Nonlinear Control 23(5), 534–547 (2013)

    Article  MathSciNet  Google Scholar 

  14. Ge, M.F., Liu, Z.W., Wen, G., Yu, X., Huang, T.: Hierarchical controller-estimator for coordination of networked Euler–Lagrange systems. IEEE Trans. Cybern. 50(6), 2450–2461 (2020)

    Article  Google Scholar 

  15. Liang, C.D., Ge, M.F., Liu, Z.W., Wang, Y.W., Karimi, H.R.: Output multiformation tracking of networked heterogeneous robotic systems via finite-time hierarchical control. IEEE Trans. Cybern. 51(6), 2893–2904 (2021)

    Article  Google Scholar 

  16. Ding, T.F., Ge, M.F., Liu, Z.W., Wang, Y.W., Karimi, H.R.: Discrete-communication-based bipartite tracking of networked robotic systems via hierarchical hybrid control. IEEE Trans. Circuits Syst. I Regul. Pap. 67(4), 1402–1412 (2020)

    Article  MathSciNet  Google Scholar 

  17. Xu, J.Z., Ge, M.F., Liu, Z.W., Zhang, W.Y., Wei, W.: Force-reflecting hierarchical approach for human-aided teleoperation of NRS with event-triggered local communication. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3068678

    Article  Google Scholar 

  18. Wang, H.: Task-space synchronization of networked robotic systems with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 58(12), 3169–3174 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ge, M.F., Guan, Z.H., Hu, B., He, D.X., Liao, R.Q.: Distributed controller-estimator for target tracking of networked robotic systems under sampled interaction. Automatica 69, 410–417 (2016)

    Article  MathSciNet  Google Scholar 

  20. Meng, Z., Dimarogonas, D.V., Johansson, K.H.: Leader-follower coordinated tracking of multiple heterogeneous Lagrange systems using continuous control. IEEE Trans. Rob. 30(3), 739–745 (2014)

    Article  Google Scholar 

  21. Liu, Y.C.: Distributed synchronization for heterogeneous robots with uncertain kinematics and dynamics under switching topologies. J. Franklin Inst. 352(9), 3808–3826 (2015)

    Article  MathSciNet  Google Scholar 

  22. Liu, C.L., Tian, Y.P.: Formation control of multi-agent systems with heterogeneous communication delays. Int. J. Syst. Sci. 40(6), 627–636 (2009)

    Article  MathSciNet  Google Scholar 

  23. Oh, K.K., Ahn, H.S.: Formation control of mobile agents based on distributed position estimation. IEEE Trans. Autom. Control 58(3), 737–742 (2012)

    Article  MathSciNet  Google Scholar 

  24. Tran, V.P., Garratt, M., Petersen, I.R.: Switching time-invariant formation control of a collaborative multi-agent system using negative imaginary systems theory. Control. Eng. Pract. 95, 104245 (2020)

    Article  Google Scholar 

  25. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  26. Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  27. Shen, H., Park, J.H., Wu, Z.G.: Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 77(4), 1709–1720 (2014)

    Article  MathSciNet  Google Scholar 

  28. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wang, L., Zeng, Z., Ge, M.F.: A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks. IEEE Trans. Syst. Man. Cybern. Syst. 99, 1–11 (2019)

    Google Scholar 

  31. Jiménez-Rodríguez, E., Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., Loukianov, A.G.: A Lyapunov-like characterization of predefined-time stability. IEEE Trans. Autom. Control 65(11), 4922–4927 (2020)

    Article  MathSciNet  Google Scholar 

  32. Liang, C.D., Ge, M.F., Liu, Z.W., Ling, G., Liu, F.: Predefined-time formation tracking control of networked marine surface vehicles. Control Eng. Pract. 107, 104682 (2021)

    Article  Google Scholar 

  33. Aldana-López, R., Gómez-Gutiérrez, D., Jiménez-Rodríguez, E., Sánchez-Torres, J.D., Loukianov, A.G.: On predefined-time consensus protocols for dynamic networks. J. Franklin Inst. 357(16), 11880–11899 (2020)

    Article  MathSciNet  Google Scholar 

  34. Guo, Z., Chen, G.: Predefined-time distributed optimal allocation of resources: a time-base generator scheme. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2997697

    Article  Google Scholar 

  35. Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Jimenéz-Rodríguez, E., Loukianov, A.G.: Predefined-time robust stabilization of robotic manipulators. IEEE-ASME Trans. Mechatron. 24(3), 1033–1040 (2019)

    Article  Google Scholar 

  36. Muñoz-Vázquez, A.J., Sánchez-Torres, J.D.: Predefined-time control of cooperative manipulators. Int. J. Robust Nonlinear Control (2020). https://doi.org/10.1002/rnc.5171

    Article  MathSciNet  Google Scholar 

  37. Ning, B., Han, Q.L., Zuo, Z.: Practical fixed-time consensus for integrator-type multi-agent systems: a time base generator approach. Automatica 105, 406–414 (2019)

    Article  MathSciNet  Google Scholar 

  38. Hsu, P., Mauser, J., Sastry, S.: Dynamic control of redundant manipulators. J. Robotic Syst. 6(2), 133–148 (1989)

    Article  Google Scholar 

  39. Su, C.Y., Stepanenko, Y.: Adaptive sliding mode control of robot manipulators: general sliding manifold case. Automatica 30(9), 1497–1500 (1994)

    Article  MathSciNet  Google Scholar 

  40. Li, Z., Duan, Z., Chen, G., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I Regul. Pap. 57(1), 213–224 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, H., Lewis, F.L., Das, A.: Optimal design for synchronization of cooperative systems: state feedback, observer, and output feedback. IEEE Trans. Autom. Control 56(8), 1948–1952 (2011)

    Article  MathSciNet  Google Scholar 

  42. Li, Z., Wen, G., Duan, Z., Ren, W.: Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control 60(4), 1152–1157 (2014)

    Article  MathSciNet  Google Scholar 

  43. Jiang, W., Wen, G., Peng, Z., Huang, T., Rahmani, A.: Fully distributed formation-containment control of heterogeneous linear multiagent systems. IEEE Trans. Autom. Control 64(9), 3889–3896 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grants 62073301 and 61803139, as well as the Fundamental Research Funds for National University, China University of Geosciences (Wuhan) under Grant 1910491B05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Feng Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statements

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, KL., Ge, MF., Liang, CD. et al. Hierarchical predefined-time control for time-varying formation tracking of multiple heterogeneous Euler–Lagrange agents. Nonlinear Dyn 105, 3255–3270 (2021). https://doi.org/10.1007/s11071-021-06792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06792-7

Keywords

Navigation