Skip to main content
Log in

Turing patterns induced by self-diffusion in a predator–prey model with schooling behavior in predator and prey

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article considers a reaction–diffusion predator–prey model with schooling behavior both in predator and prey species and subject to the homogeneous Neumann boundary condition on a square domain. With the help of the standard linearized analysis, the spatially homogeneous Hopf bifurcation curve and the Turing bifurcation curve of the unique constant positive steady state are obtained. These curves divide the existence domain of the constant positive steady state of the model into the stable, the Hopf unstable, the Turing unstable and the Hopf–Turing unstable regions. When the parameters are in the Turing unstable domain and near the Turing bifurcation curve, by applying the multiple-scale analysis and the successive approximations, the amplitude equations of the system near the constant steady state are derived. Meanwhile, the classification and stability of the patterns of the system are presented in terms of the existence and stability of the stationary solutions of the derived amplitude equations. Numerical simulations show that the presented model can exhibit complicated dynamical behaviors and may help us better understand the interaction between two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abid, W., Yafia, R., Aziz-Alaoui, M.A., Bouhafa, H., Abichou, A.: Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain. Appl. Math. Comput. 260, 292–313 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Ajraldi, V., Pittavino, M., Venturino, E.: Modeling herd behavior in population systems. Nonlinear Anal. RWA 12, 2319–2333 (2011)

    Article  MathSciNet  Google Scholar 

  3. Alidousti, J., Ghafari, E.: Dynamic behavior of a fractional order prey-predator model with group defense. Chaos Solitons Fractals 134, 109688 (2020)

    Article  MathSciNet  Google Scholar 

  4. Banerjee, M., Banerjee, S.: Turing instabilities and spatio-temporal chaos in ratio-dependent Holling–Tanner model. Math. Biosci. 236, 64–76 (2012)

    Article  MathSciNet  Google Scholar 

  5. Banerjee, M., Petrovskii, S.: Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theor. Ecol. 4, 37–53 (2011)

    Article  Google Scholar 

  6. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  7. Fernandes, R.I., Bialecki, B., Fairweather, G.: An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems on evolving domains. Comput. Phys. 299, 561–580 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gambino, G., Lombardo, M.C., Sammartino, M.: Pattern formation driven by cross-diffusion in a 2-D domain. Nonlinear Anal. RWA 14, 1755–1779 (2013)

    Article  MathSciNet  Google Scholar 

  9. Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in MATLAB. Bull. Math. Biol. 69, 931–956 (2007)

    Article  MathSciNet  Google Scholar 

  10. Jiang, H.P.: Turing bifurcation in a diffusive predator–prey model with schooling behavior. Appl. Math. Lett. 96, 230–235 (2019)

    Article  MathSciNet  Google Scholar 

  11. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    Article  Google Scholar 

  12. Leppänen, T.: PhD thesis, Helsinki University of Technology, Finland (2004)

  13. Levin, S.A., Segal, L.A.: Hypothesis for origin of planktonic patchiness. Nature 259, 659 (1976)

    Article  Google Scholar 

  14. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins Co., New York (1925)

    MATH  Google Scholar 

  15. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  16. Manna, D., Maiti, A., Samanta, G.P.: Analysis of a predator-prey model for exploited fish populations with schooling behavior. Appl. Math. Comput. 317, 35–48 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Melchionda, D., Pastacaldi, E., Perri, C., Banerjee, M., Venturino, E.: Social behavior-induced multistability in minimal competitive ecosystems. J. Theor. Biol. 439, 24–38 (2017)

    Article  MathSciNet  Google Scholar 

  18. Murray, J.D.: Mathematical Biology II. Springer, Heidelberg (1993)

    Book  Google Scholar 

  19. Ouyang, Q.: Pattern Formation in Reaction–diffusion Systems. Shanghai Sci-Tech Education Publishing House, Shanghai (2000)

    Google Scholar 

  20. Ouyang, Q., Gunaratne, G.H., Swinney, H.L.: Rhombic patterns: broken hexagonal symmetry. Chaos 3(4), 707–711 (1993)

    Article  Google Scholar 

  21. Pascual, M.: Diffusion-induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. B 251, 1–7 (1993)

    Article  Google Scholar 

  22. Petrovskii, S.V., Malchow, H.: A minimal model of pattern formation in a prey-predator system. Math. Comput. Model. 29, 49–63 (1999)

    Article  MathSciNet  Google Scholar 

  23. Rietkerk, M., Koppe, J.V.D.: Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23(3), 169–175 (2008)

    Article  Google Scholar 

  24. Sherratt, J.A., Eagan, B.T., Lewis, M.A.: Oscillations and chaos behind predator-prey invasion: mathematical artifact or ecological reality? Philos. Trans. R. Soc. Lond. B 352, 21–38 (1997)

    Article  Google Scholar 

  25. Sherratt, J.A., Lewis, M.A., Fowler, A.C.: Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA 92, 2524–2528 (1995)

    Article  Google Scholar 

  26. Song, Y.L., Yang, R., Sun, G.Q.: Pattern dynamics in a Gierer–Meinhardt model with a saturating term. Appl. Math. Model. 46, 476–491 (2017)

    Article  MathSciNet  Google Scholar 

  27. Song, Y.L., Zou, X.F.: Bifurcation analysis of a diffusive ratio-dependent predator-prey model. Nonlinear Dyn. 78, 49–70 (2014)

    Article  MathSciNet  Google Scholar 

  28. Sun, G.: Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012)

    Article  MathSciNet  Google Scholar 

  29. Sun, G., Jin, Z., Liu, Q., Li, L.: Pattern formation in a spatial S-I model with non-linear incidence rates. J. Stat. Mech. Theory Exp. 07, P11011 (2007)

    Article  Google Scholar 

  30. Tang, X.S., Song, Y.L.: Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior. Appl. Math. Comput. 254, 375–391 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  32. Verhulst, P.F.: Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  33. Volterra, V.: Variazionie fluttuazioni del numero d’individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2, 31–113 (1926)

  34. Xie, B., Wang, Z., Xue, Y.: Pattern formation in a predator-prey model with both cross diffusion and time delay, Abstr. Appl. Anal. (2014) 2014

  35. Xie, Z.F.: Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete Contin. Dyn. Syst. Ser. S 4, 1621–1628 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Yan, X.P., Chen, J.Y., Zhang, C.H.: Dynamics analysis of a chemical reaction-diffusion model subject to Degn–Harrison reaction scheme. Nonlinear Anal. Real World Appl. 48, 161–181 (2019)

    Article  MathSciNet  Google Scholar 

  37. Yang, J.G., Zhang, T.H., Yuan, S.L.: Turing pattern induced by cross-diffusion in a predator-prey model with pack predation-herd behavior. Int. J. Bifur. Chaos 7, 1–22 (2020)

    MATH  Google Scholar 

  38. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatio-temporal patterns in a homogeneous diffusive predator-prey system. Differ. Equ. 246, 1944–1977 (2009)

    Article  Google Scholar 

  39. Zhang, R., Yu, X., Zhu, J., Loula, A.F.D.: Direct discontinuous Galerkin method for nonlinear reaction–diffusion systems in pattern formation. Appl. Math. Model. 38, 1612–1621 (2014)

    Article  MathSciNet  Google Scholar 

  40. Zhang, T., Zang, H.: Delay-induced turing instability in reaction-diffusion equations. Phys. Rev. E 90, 052908 (2014)

    Article  Google Scholar 

  41. Zhao, H., Huang, X., Zhang, X.: Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn. 76, 115–124 (2014)

    Article  MathSciNet  Google Scholar 

  42. Zhao, H., Zhang, X., Huang, X.: Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion. Appl. Math. Comput. 266, 462–480 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ping Yan.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China (61563026, 61763024) and Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University (152022).

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yan, XP. & Zhang, CH. Turing patterns induced by self-diffusion in a predator–prey model with schooling behavior in predator and prey. Nonlinear Dyn 105, 3731–3747 (2021). https://doi.org/10.1007/s11071-021-06743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06743-2

Keywords

Mathematics Subject Classification

Navigation