Skip to main content
Log in

Leakage-type adaptive state and disturbance observers for uncertain nonlinear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a novel adaptive observer technique for estimating the state and disturbance of uncertain nonlinear systems. To remove the knowledge of the upper bounds of the disturbance and its derivative, a leakage-type (LT) algorithm is introduced to approximate the variations of their bounds. A state observer is first provided based on a conventional Walcott–Zak observer structure, and then, a disturbance observer is proposed by introducing an auxiliary dynamics. Due to the features of the LT adaptive law, the estimation error of the system state or the disturbance is bounded in a small neighborhood around zero in finite time. In addition, since the switching gain is automatically adapted to the disturbance change, the chattering in the estimation signal is effectively suppressed that is useful for the estimation precision in a practical system. Another important advantage of the proposed method lies in its simple structure compared to the existing finite-time observers. Lyapunov analysis demonstrates that for both types of observers, the estimation error is achieved to be globally uniformly ultimately bounded. To demonstrate the proposed method, simulation examples are separately carried out on a vehicle system and a linear motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aaron Radke and Zhiqiang Gao A survey of state and disturbance observers for practitioners. American Control Conference, 2006

  2. Hou, Q., Ding, S.: GPIO based super-twisting sliding mode control for PMSM. IEEE Trans. Circ. Syst. II Express Briefs 68(2), 747–751 (2021)

    Google Scholar 

  3. Antonov, S., Fehn, A., Kugi, A.: Unscented kalman filter for vehicle state estimation. Vehicle Syst. Dynam. 49(9), 1497–1520 (2011)

    Article  Google Scholar 

  4. Ning, W.H., Wang, W.J.: Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics. Nonlinear Dynam. 72(3), 615–628 (2013)

    Article  MathSciNet  Google Scholar 

  5. Rsetam, K., Cao, Z., Man, Z.: Cascaded-extended-state-observer-based sliding-mode control for underactuated flexible joint robot. Trans. Indus. Electron. 67(12), 10822–10832 (2020)

    Article  Google Scholar 

  6. Madoski, R., Stankovic, M.R., Shao, S.S., Gao, Z., Li, S.: Active disturbance rejection control of torsional plant with unknown frequency harmonic disturbance. Control Eng. Practice 100, 104413 (2020)

    Article  Google Scholar 

  7. Hou, Q., Ding, S., Xinghuo, Y.: Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer. IEEE Trans. Energy Conv. (2020). https://doi.org/10.1109/TEC.2020.2985054

    Article  Google Scholar 

  8. Li, S., Sun, H., Yang, J., Xinghuo, Y.: Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans. Automatic Control 60(1), 277–282 (2015)

    Article  MathSciNet  Google Scholar 

  9. Shao, K., Zheng, J., Wang, H., Feng, X., Liang, B.: Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner. Mech. Syst. Signal Process. 146, 107014 (2021)

    Article  Google Scholar 

  10. Ding, S., Chen, W.-H., Mei, K., Murray-Smith, D.J.: Disturbance observer design for nonlinear systems represented by input-output models. IEEE Trans. Indus. Electron. 67(2), 1222–1232 (2020)

    Article  Google Scholar 

  11. Bandyopadhyay, B., Gandhi, P., Kurode, S.: Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme. IEEE Trans. Indus. Electron. 56(9), 3432–3442 (2009)

    Article  Google Scholar 

  12. Lin, S., Cai, Y., Yang, B., Zhang, W.: Electrical line-shafting control for motor speed synchronisation using sliding mode controller and disturbance observer. IET Control Theory Appl. 11(2), 205–212 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ji Xiang, Hongye Su, and Jian Chu. On the design of Walcott-Zak sliding mode observer. American Control Conference, 2451–2456 2005

  14. Edwards, Christopher, Spurgeon, Sarah K.: Sliding Mode Control: Theory and Applications. CRC Press, Cambridge (1998)

    Book  Google Scholar 

  15. Kalsi, Karanjit, Lian, Jianming, Hui, Stefen, Żak, Stanislaw H.: Sliding-mode observers for systems with unknown inputs: a high-gain approach. Automatica 46, 347–353 (2010)

    Article  MathSciNet  Google Scholar 

  16. Xiaobo, L., Yao, Y., Chang, Y.S.: A decoupling control for quadrotor UAV using dynamic surface control and sliding mode disturbance observer. Nonlinear Dynam. 97(1), 781–795 (2019)

    Article  Google Scholar 

  17. Wang, N., Sun, Z., Yin, J., Zou, Z., Shun-Feng, S.: Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns. Ocean Eng. 176, 57–64 (2019)

    Article  Google Scholar 

  18. Yingchun, W., Longfei, Z., Huaguang, Z., Wei, X.Z.: Fuzzy observer-based repetitive tracking control for nonlinear systems. IEEE Trans. Fuzzy Sys. 28(10), 2401–2415 (2020)

    Article  Google Scholar 

  19. Feng, Y., Xinghuo, Y., Han, F.: On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49, 1715–1722 (2013)

    Article  MathSciNet  Google Scholar 

  20. Prasad, S., Ansari, M.R.: Frequency regulation using neural network observer based controller in power system. Control Eng. Practice 102, 104571 (2020)

    Article  Google Scholar 

  21. Petros Ioannou and Simone Baldi. Robust Adaptive Control. IEEE, 1984

  22. Shao, K., Zheng, J., Wang, H., Wang, X., Lu, R., Man, Z.: Tracking control of a linear motor positioner based on barrier function adaptive sliding mode. IEEE Trans. Indus. Inform. (2021). https://doi.org/10.1109/TII.2021.3057832

    Article  Google Scholar 

  23. Shao, K.: Nested adaptive integral terminal sliding mode control for high-order uncertain nonlinear systems. Int. J. Robust Nonlinear Control (2021). https://doi.org/10.1002/rnc.5631

    Article  Google Scholar 

  24. Shtessel, Yuri B., Shkolnikov, Ilya A., Levant, Arie: Smooth second-order sliding modes: missile guidance application. Automatica 43(8), 1470–1476 (2007)

    Article  MathSciNet  Google Scholar 

  25. Yang, J., Li, S., Jinya, S., Xinghuo, Y.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  Google Scholar 

  26. Wang, H., Shi, L., Man, Z., Zheng, J., Li, S., Ming, Y., Jiang, C., Kong, H., Cao, Z.: Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE Trans. Indus. Electron. 65(9), 7160–7172 (2018)

    Article  Google Scholar 

  27. Rabiee, H., Ataei, M., Ekramian, M.: Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica 109, 108515 (2019)

  28. Sun, H., Chen, Y.-H., Zhao, H.: Adaptive robust control methodology for active roll control system with uncertainty. Nonlinear Dynam. 92(2), 359–371 (2018)

    Article  Google Scholar 

  29. Li, P., Xiang, Y., Xiao, B.: Adaptive quasi-optimal higher order sliding-mode control without gain overestimation. IEEE Trans. Indus. Inform. 14(9), 3881–3891 (2018)

    Article  Google Scholar 

  30. Zhang, J., Shi, P., Xia, Y.: Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Trans. Fuzzy Syst. 18(4), 700–711 (2010)

  31. Roy, S., Baldi, S., Fridman, L.M.: On adaptive sliding mode control without a priori bounded uncertainty. Automatica 111, 108650 (2019)

    Article  MathSciNet  Google Scholar 

  32. H.K. Khalil. Nonlinear Systems (3rd ed.). Prentice hall Upper Saddle River, 2002

  33. Rodrigues, V.H.P., Oliveira, T.R.: Global adaptive HOSM differentiators via monitoring functions and hybrid state-norm observers for output feedback. Int. J. Control 91(9), 2060–2072 (2018)

    Article  MathSciNet  Google Scholar 

  34. Rios, H., Efimov, D., Perruquetti, W.: An adaptive sliding-mode observer for a class of uncertain nonlinear systems. Int. J. Adaptive Control Signal Process. 32(3), 511–527 (2018)

    Article  MathSciNet  Google Scholar 

  35. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014)

    Book  Google Scholar 

  36. Shen, Q., Jiang, B., Cocquempot, V.: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 22(2), 338–349 (2014)

    Article  Google Scholar 

  37. Rajamani, R.: Vehicle Dynamics and Control. Springer, New York (2011)

    MATH  Google Scholar 

  38. Shao, K., Zheng, J., Huang, K., Wang, H., Minyue, F.: Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode. IEEE Trans. Indus. Electron. 67(8), 6659–6668 (2020)

    Article  Google Scholar 

  39. Gieras, J.F., Piech, Z.J., Tomczuk, B.: Linear Synchronous Motors: Transportation and Automation Systems. CRC Press, Cambridge (2016)

    Google Scholar 

  40. Wojtyra, Marek: multibody simulation model of human walking. Mech. Based Design Struct. Mach. 31(3), 357–379 (2003)

    Article  Google Scholar 

  41. Youhao, H., Wang, H.: Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech Syst Signal Process 135, 106375 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U1813216 and No. 62003186) and the Natural Science Foundation of Guangdong Province (No. 2020A1515010334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A Proof of Lemma 2.3

Inequality (3) can be rewritten as

$$\begin{aligned} \dot{V}(x)\le & {} -\kappa V(x)+\epsilon \nonumber \\= & {} -\kappa \theta V(x)-\kappa (1-\theta ) V(x)+\epsilon , \end{aligned}$$
(48)

where \(0<\theta <1\). It is obvious that if \(V(x)>\frac{\epsilon }{\kappa (1-\theta )}\), \(\dot{V}(x)\le -\kappa \theta V(x)\). Therefore, V(x) is bounded by

$$\begin{aligned} V(x)\le \frac{\epsilon }{\kappa (1-\theta )}:=\bar{b}. \end{aligned}$$
(49)

Furthermore, for \(\dot{V}(x)\le -\kappa \theta V(x)\), we obtain

$$\begin{aligned} \frac{1}{V(x)}d V(x)\le -\kappa \theta . \end{aligned}$$
(50)

Let \(t_V\) be the time required to reach the region \(V(x)=\bar{b}\). Integrating (50) between V(x) and \(\bar{b}\) leads to

$$\begin{aligned} \int _{V(0)}^{\bar{b}}\frac{1}{V(t)}d V(x)=\ln {\bar{b}}-\ln {V(0)}\le -\kappa \theta t_V. \end{aligned}$$
(51)

Therefore,

$$\begin{aligned} t_V\le \frac{1}{\kappa \theta }\ln {\frac{V(0)}{\bar{b}}}. \end{aligned}$$
(52)

This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, K., Zheng, J., Wang, H. et al. Leakage-type adaptive state and disturbance observers for uncertain nonlinear systems. Nonlinear Dyn 105, 2299–2311 (2021). https://doi.org/10.1007/s11071-021-06715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06715-6

Keywords

Navigation