Skip to main content
Log in

Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is the Ivancevic option pricing model. Based on trial function method, rogue wave and dark wave solutions are constructed. By means of symbolic computation, these analytical solutions are obtained with the Maple. Perturbation solutions are obtained through direct perturbation method. These results will enrich the existing literature of the Ivancevic option pricing model. Dynamical characteristics for rogue waves and dark waves are exhibited by using three-dimensional plots, curve plots, density plots and contour plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statements

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study

References

  1. Yıldırım, Y., Yasar, E., Adem, A.R.: A multiple exp-function method for the three model equations of shallow water waves. Nonlinear Dyn. 89, 2291–2297 (2017)

    Article  MathSciNet  Google Scholar 

  2. Yıldırım, Y., Yaşar, E.: An extended korteweg-de vries equation: multi-soliton solutions and conservation laws. Nonlinear Dyn. 90, 1571–1579 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yaşar, E.: New travelling wave solutions to the ostrovsky equation. Appl. Math. Comput. 216(11), 3191–3194 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Yıldırım, Y., Yaşar, E.: A (2+1)-dimensional breaking soliton equation: solutions and conservation laws. Chaos Solitons Fract. 107, 146–155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moretlo, T.S., Muatjetjeja, B., Adem, A.R.: On the solutions of a (3+1)-dimensional novel kp-like equation. Iran J Sci Technol Trans Sci 45, 1037–1041 (2021)

    Article  MathSciNet  Google Scholar 

  6. Adem, A.R.: The generalized (1+1)-dimensional and (2+1)-dimensional ito equations: multiple exp-function algorithm and multiple wave solutions. Comput. Math. Appl. 71(6), 1248–1258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Moretlo, T.S., Muatjetjeja, B., Adem, A.R.: Lie symmetry analysis and conservation laws of a two-wave mode equation for the integrable kadomtsev-petviashvili equation. J. Appl. Nonlinear Dyn. 10(1), 65–79 (2021)

    Article  MathSciNet  Google Scholar 

  8. Giresunlu, I.B., Yaşar, E., Adem, A.R.: The logarithmic (1+1)-dimensional kdv-like and (2+1)-dimensional kp-like equations: Lie group analysis, conservation laws and double reductions. Int. J. Nonlinear Sci. Numer. Simul. 20(7–8), 747–755 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Younis, M., Ali, S., Rizvi, S.T.R., Tantawy, M., Tariq, K.U., Bekir, A.: Investigation of solitons and mixed lump wave solutions with (3+1)-dimensional potential-ytsf equation. Commun. Nonlinear Sci. Numer. Simul. 94, 105544 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sağlam Özkan, Y., Yaşar, E.: Breather-type and multi-wave solutions for (2+1)-dimensional nonlocal gardner equation. Appl. Math. Comput. 390, 125663 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Guo, Y.F., Dong, L., Li, J.X.W.: The new exact solutions of the Fifth-Order Sawada-Kotera equation using three wave method. Appl. Math. Lett. 94, 232–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gai, L.T., Ma, W.X., Li, M.C.: Lump-type solution and breather lump-kink interaction phenomena to a (3+1)-dimensional GBK equation based on trilinear form. Nonlinear Dyn. 100, 2715–2727 (2020)

    Article  Google Scholar 

  13. Qin, C.Y., Tian, S.F., Wang, X.B., Zhang, T.T.: On breather waves, rogue waves and solitary waves to a generalized (2+1)-dimensional camassa-holm-kadomtsev-petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 62, 378–385 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gai, L.T., Ma, W.X., Li, M.C.: Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation. Phys. Lett. A 384, 126178 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yin, H.M., Tian, B., Zhang, C.R., Du, X.X., Zhao, X.C.: Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn. 97, 843–852 (2019)

    Article  MATH  Google Scholar 

  16. Wazwaz, A.M.: Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations. Appl. Math. Lett. 88, 1–7 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, J.G., Wazwaz, M.S.O.A.M.: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients in nonlinear optical fibers. Optik 180, 917–923 (2019)

    Article  Google Scholar 

  18. Ding, Y., Osman, M.S., Wazwaz, A.M.: Abundant complex wave solutions for the nonautonomous Fokas-Lenells equation in presence of perturbation terms. Optik 181, 503–513 (2019)

    Article  Google Scholar 

  19. Lan, Z.Z., Gao, Y.T., Yang, J.W., Su, C.Q., Mao, B.Q.: Solitons, bäcklund transformation and lax pair for a (2+1)-dimensional broer-kaup-kupershmidt system in the shallow water of uniform depth. Commun. Nonlinear Sci. Numer. Simul. 44, 360–372 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, B.N., Wazwaz, A.M.: General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation. Commun. Nonlinear Sci. Numer. Simul. 64, 1–13 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient sawada-kotera equation. Nonlinear Dyn. 96(2), 1491–1496 (2019)

    Article  MATH  Google Scholar 

  22. Javid, A., Raza, N., Osman, M.S.: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets. Commun. Theor. Phys. 71(4), 362–366 (2019)

    Article  MathSciNet  Google Scholar 

  23. Srivastava, H.M., Baleanu, D., Machado, J.A.T., Osman, M.S., Rezazadeh, H., Arshed, S., Günerhan, H.: Traveling wave solutions to nonlinear directional couplers by modified kudryashov method. Phys. Scr. 95(7), 075217 (2020)

    Article  Google Scholar 

  24. Zhou, Y., Manukure, S., Ma, W.X.: Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun. Nonlinear Sci. 68, 56–62 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, J.G., Zhu, W.H.: Various exact analytical solutions of a variable-coefficient Kadomtsev-Petviashvili equation. Nonlinear Dyn. 100, 2739–2751 (2020)

    Article  Google Scholar 

  26. Kaur, L., Wazwaz, A.M.: Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation. Int. J. Numer. Method H. 29(2), 569–579 (2019)

    Article  Google Scholar 

  27. Osman, M.S., Inc, M., Liu, J.G., Hosseini, K., Yusuf, A.: Different wave structures and stability analysis for the generalized (2+1)-dimensional camassa-holm-kadomtsev-petviashvili equation. Phys. Scr. 95(3), 035229 (2020)

    Article  Google Scholar 

  28. Ismael, H.F., Bulut, H., Park, C., Osman, M.S.: M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Results Phys. 19, 103329 (2020)

    Article  Google Scholar 

  29. Tahir, M., Awan, A.U., Osman, M.S., Baleanu, D., Alqurashi, M.M.: Abundant periodic wave solutions for fifth-order sawada-kotera equations. Results Phys. 17, 103105 (2020)

    Article  Google Scholar 

  30. Osman, M., Baleanu, D., Adem, A., Hosseini, K., Mirzazadeh, M., Eslami, M.: Double-wave solutions and lie symmetry analysis to the (2 + 1)-dimensional coupled burgers equations. Chin. J. Phys. 63, 122–129 (2020)

    Article  MathSciNet  Google Scholar 

  31. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional hirota-satsuma-ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, J.G.: Collisions between lump and soliton solutions. Appl. Math. Lett. 92, 184–189 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X.M., Bilige, S.D., Pang, J.: Rational solutions and their interaction solutions of the (3+1)–dimensional jimbo–miwa equation. Adv. Math. Phys. p. 9260986 (2020)

  34. Zhang, R.F., Bilige, S.D., Fang, T., Chaolu, T.: New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo-Miwa-like equation. Comput. Math. Appl. 78, 754–764 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X.M., Bilige, S.D., Pang, J.: Novel interaction phenomena of the (3+1)-dimensional jimbo-miwa equation. Commun. Theor. Phys. 72, 045001 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Manafian, J., Lakestani, M.: N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation. J. Geom. Phys. 150, 103598 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Manafian, J., Lakestani, M.: Lump-type solutions and interaction phenomenon to the bidirectional Sawada-Kotera equation. Pramana 92, 41 (2019)

    Article  Google Scholar 

  38. Manafian, J., Mohammadi-Ivatloo, B., Abapour, M.: Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation. Appl. Math. Comput. 356, 13–41 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Wazwaz, A.M., Kaur, L.: Complex simplified hirota’s forms and lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation. Nonlinear Dyn. 95, 2209–2215 (2019)

    Article  MATH  Google Scholar 

  40. Liu, J.G., Osman, M.S., Zhu, W.H., Zhou, L., Baleanu, D.: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium. AIP Advances 10(10), 105325 (2020)

    Article  Google Scholar 

  41. Zhang, R.F., Bilige, S.D.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equatuon. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  42. Zhang, R.F., Bilige, S.D., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2020)

    Article  Google Scholar 

  43. Zhang, R.F., Bilige, S.D., Temuer, C.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Article  Google Scholar 

  45. Wazwaz, A.M.: The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154(3), 713–723 (2004)

  46. Wazwaz, A.M.: The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations. Chaos, Solitons Fractals 38(5), 1505–1516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shakeel, M., Mohyud-Din, S.T.: Improved (G’/G)-expansion and extended tanh methods for (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation. Alex. Eng. J. 54(1), 27–33 (2015)

    Article  Google Scholar 

  48. Wazwaz, A.M.: The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation. Appl. Math. Comput. 199(1), 133–138 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Wazwaz, A.M.: The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation. Appl. Math. Comput. 200(1), 160–166 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Ren, Y.W., Tao, M.S., Dong, H.H., Yang, H.W.: Analytical research of (3+1)-dimensional rossby waves with dissipation effect in cylindrical coordinate based on lie symmetry approach. Adv. Differ. Equ. 2019(1), 13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sun, Y.L., Ma, W.X., Yu, J.P., Khalique, C.M.: Exact solutions of the Rosenau-Hyman equation, coupled KdV system and Burgers-Huxley equation using modified transformed rational function method. Mod. Phys. Lett. B 33, 1850282 (2018)

    Article  MathSciNet  Google Scholar 

  52. Ivancevic, V.G.: Adaptive-Wave Alternative for the Black-Scholes Option Pricing Model. Cogn. Comput. 2, 17–30 (2010)

    Article  Google Scholar 

  53. Jena, R.M., Chakraverty, S., Baleanu, D.: A novel analytical technique for the solution of time-fractional ivancevic option pricing model. Phys. A 550, 124380 (2020)

    Article  MathSciNet  Google Scholar 

  54. Lou, S.Y., Chen, W.Z.: Inverse recursion operator of the akns hierarchy. Phys. Lett. A 179(4), 271–274 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qiong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YQ., Tang, YH., Manafian, J. et al. Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model. Nonlinear Dyn 105, 2539–2548 (2021). https://doi.org/10.1007/s11071-021-06642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06642-6

Keywords

Navigation