Skip to main content
Log in

Chaos break and synchrony enrichment within Hindmarsh–Rose-type memristive neural models

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The fluctuation of ions concentration across the cell membrane of neuron can generate a time varying electromagnetic field. Thus, memristors are used to realize the coupling between the magnetic flux and the membrane potential across the membrane. Such coupling results from the phenomenon of electromagnetic induction in neurons. In this work, we numerically show that the electromagnetic induction phenomenon can firstly suppress chaotic states in a neural setups and secondly enrich neural synchrony in a system of two coupled neurons. By means of the bifurcation diagrams on maximum Lyapunov exponent and interspike interval, we show that increasing in memristor strength delocalizes first, then fully suppresses chaotic states in a single neuron. In a system of two electrically coupled Hindmarsh–Rose-type neurons, we realize that increasing in memristor strength gradually reduces the threshold value of electrical synaptic coupling strength above which a transition to synchronized states is achieved. The transition to synchronized states are determined either by the sign of the maximum transverse Lyapunov exponent or by the magnitude of the synchronization factor. Our results suggest that chaos break in a neurons group by electromagnetic induction phenomenon might automatically release neural synchrony which is involved in information processing and many seizures in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80 (2008)

    Article  Google Scholar 

  3. Sah, M.P., Yang, C., Kim, H., Muthuswamy, B., Jevtic, J., Chua, L.: A Generic Model of Memristors With Parasitic Components. IEEE TCAS I: Regular Papers 62, 891 (2015)

    MathSciNet  Google Scholar 

  4. Ben-Abdallah, P.: Thermal memristor and neuromorphic networks for manipulating heat flow. AIP Adv. 7, 065002 (2017)

    Article  Google Scholar 

  5. Ordonez-Miranda, J., Ezzahri, Y., Tiburcio-Moreno, J.A., Joulain, K., Drevillon, J.: Radiative Thermal Memristor. Phys. Rev. Lett. 123, 025901 (2019)

    Article  Google Scholar 

  6. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N., Vaidyanathan, S.: Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits. J Eng Sci Tech Rev 8, 157 (2015)

    Article  Google Scholar 

  7. C.N. Takembo, A. Mvogo, H.P. EkobenaFouda, T.C. Kofané, Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95 1067 (2019)

    Article  MATH  Google Scholar 

  8. Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int J Bifurcat Chaos 22, 1230011 (2012)

    Article  MATH  Google Scholar 

  9. Hegab, A.M., Salem, N.M., Radwan, A.G., Chua, L.: Neuron Model with Simplified Memristive Ionic Channels. Int J Bifurcat Chaos 25, 1530017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lv, M., Ma, J., Yao, Y., Alzahrani, F.: Synchronization and wave propagation in neuronal network under field coupling. Sci China Tech Sci 62, 448 (2019)

    Article  Google Scholar 

  11. Chen, M., Ren, X., Wu, H., Xu, Q., Bao, B.: Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front Inform Technol Electron Eng 20, 1706 (2019)

    Article  Google Scholar 

  12. Tang, K., Wang, Z., Shi, X.: Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction. Front Comput Neurosci 11, 105 (2017)

    Article  Google Scholar 

  13. Etémé, A.S., Tabi, C.B., Mohamadou, A.: Firing and synchronization modes in neural network under magnetic stimulation. Commun Nonlinear Sci Numer Simulat 72, 432 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tabi, C.B., Etémé, A.S., Mohamadou, A., Kofané, T.C.: Unstable discrete modes in Hindmarsh-Rose neural networks under magnetic flow effect. Chaos Sol Fract 123, 116 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Etémé, A.S., Tabi, C.B., Mohamadou, A., Kofané, T.C.: Long-range memory effects in a magnetized Hindmarsh-Rose neural network. Commun Nonlinear Sci Numer Simulat 84, 105208 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahma, B.: Synchronization between neurons coupled by memristor. Chaos Sol Fract 104, 435 (2017)

    Article  Google Scholar 

  17. Xu, K., Maidana, J.P., Castro, S., Orio, P.: Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators. Sci Rep 8, 8370 (2018)

    Article  Google Scholar 

  18. Rabinovich, M.I., Abarbanel, H.D.I.: The role of chaos in neural systems. Neuroscience 87, 5 (1998)

    Article  Google Scholar 

  19. Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., Courchesne, E.: Disrupted neural synchronization in toddlers with autism. Neuron 70, 1218 (2011)

    Article  Google Scholar 

  20. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differenial equations. Proc R Soc Lond B 221, 87 (1984)

    Article  Google Scholar 

  21. Yang, F., Gordon, M.P., Urban, J.J.: Theoretical framework of the thermal memristor via a solid-state phase change material. J. Appl. Phys. 125, 025109 (2019)

    Article  Google Scholar 

  22. C. Kass-Petersen, Chaos in Biological System. Plenum, New York, (1987)

    Google Scholar 

  23. Hansel, D., Sompolinsky, H.: Synchronization and Computation in a Chaotic Neural Network. Phys. Rev. Lett. 68, 718 (1992)

    Article  Google Scholar 

  24. Rapp, P.E.: Chaos in the neurosciences: cautionary tales from the frontier. Biologist 40, 89 (1993)

    Google Scholar 

  25. Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to Synchrony in Coupled Bursting Neurons. Phys. Rev. Lett. 92, 028101 (2004)

    Article  Google Scholar 

  26. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of Neural Synchrony by Time Delay. Phys. Rev. Lett. 92, 074104 (2004)

    Article  Google Scholar 

  27. Budzinski, R.C., Boaretto, B.R.R., Prado, T.L., Lopes, S.R.: Temperature dependence of phase and spike synchronization of neural networks. Chaos Sol Fract 123, 35 (2019)

    Article  MathSciNet  Google Scholar 

  28. Fell, J., Axmacher, N.: The role of phase synchronization in memory processes. Nat Rev Neurosci 12, 105 (2011)

    Article  Google Scholar 

  29. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185, 77 (1994)

    Article  Google Scholar 

  30. Yu, W.-T., Tang, J., Ma, J., Yang, X.: Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. EPL 114, 50006 (2016)

    Article  Google Scholar 

  31. Usha, K., Subha, P.A.: Hindmarsh-Rose neuron model with memristors. BioSystems 178, 1 (2019)

    MATH  Google Scholar 

  32. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  33. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn 85, 1479 (2016)

    Article  Google Scholar 

  34. Wang, W., Perez, G., Cerdeira, H.A.: Dynamical behavior of the firings in a coupled neuronal system. Phys. Rev. E 47, 2893 (1993)

    Article  Google Scholar 

  35. M.J. Ogorzatek, Chaos and Complexity in Nonlinear Electronic Circuits World, Scientific Publishing Co Pte Ltd, Singapore (1997)

    Book  Google Scholar 

  36. Balcerzak, M., Pikunov, D., Dabrowski, A.: The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dyn 94, 3053 (2018)

    Article  Google Scholar 

  37. Zhang, J., Wang, C., Wang, M., Huang, S.: Firing patterns transition induced by system size in coupled Hindmarsh-Rose neural system. Neurocomputing 74, 2961 (2011)

    Article  Google Scholar 

  38. Fehlberg, E.: Classical fifth-, sixth-, seventh-, and eighth-order Runge–Kutta Formulas with stepsize control. Nasa Technical Report 287 (1968)

  39. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, London (1981)

    Google Scholar 

  40. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int J Bifurcat Chaos 10, 1171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Boaretto, B.R.R., Budzinski, R.C., Prado, T.L., Kurths, J., Lopes, S.R.: Neuron dynamics variability and anomalous phase synchronization of neural networks. Chaos 28, 106304 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The corresponding author (A.S. Etémé) is very grateful to all experts who have significantly contributed to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Sylvin Etémé.

Ethics declarations

Conflict of interest

The authors of this paper declare that they have no conflict of interest concerning the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etémé, A.S., Tabi, C.B., Beyala Ateba, J.F. et al. Chaos break and synchrony enrichment within Hindmarsh–Rose-type memristive neural models. Nonlinear Dyn 105, 785–795 (2021). https://doi.org/10.1007/s11071-021-06640-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06640-8

Keywords

Navigation