Skip to main content
Log in

Nanopositioning control of an electrostatic MEMS actuator: adaptive terminal sliding mode control approach

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research proposes an adaptive terminal sliding mode control strategy dedicated to motion tracking control of an electrostatic-actuated nanopositioning system. The electrostatic actuators’ dynamics are highly nonlinear as a result of the nature of the electrostatic force on the top plate making challenges to the researchers. This research aimed to provide a strong controller setpoint regulation maneuvers of a micro-mechanical electrostatic actuator system for reducing the vibration impacts on its performance. Forces applied to the electrostatic micro-electromechanical systems (MEMS) actuator are also designed using a nonlinear controller. Appropriate adaptive terminal sliding mode laws are capable of nanoscale positioning resolution, which is generally interpreted as a few nanometers (0.001 nm) and below. Its stability is proven using the Lyapunov theory. The obtained results show the effectiveness of the proposed method (about 50%) to achieve precise positioning. also, tests are given to evaluate the performance of the proposed method when external disturbances are acting on the actuator. These results show that the suggested controller is robust under disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

\(A\) :

Area of the electrodes

\(l\left( t \right)\) :

Gap distance

\(l_{0} \left( t \right)\) :

Initial gap distance

\(Q\left( t \right)\) :

Charge on an electrode

\(i\left( t \right)\) :

Current through the device

\(r\) :

Electrical resistance

\(\varepsilon\) :

Vacuum permittivity

\(v\left( t \right)\) :

Control voltage

\(m\) :

Actuator's mass

\(k\) :

Stiffness

\(b\) :

Damping

\(\sigma\) :

Positive constant

\(x_{d}\) :

Position desired

\(e_{x}\) :

Tracking error

\(\lambda _{i}\) :

Control gains

\(S\) :

Sliding surface

\(\beta\) :

Adaptive gain

\(w,\fancyscript{h}\) :

Control parameters

\(x\) :

Normalized state vector

\(t\) :

Time

References

  1. Khan, N.S., Gul, T., Islam, S., Khan, I., Alqahtani, A.M., Alshomrani, A.S.: Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer. Appl. Sci. 7(3), 271 (2017)

    Article  Google Scholar 

  2. Alkasassbeh, M., Omar, Z., Mebarek-Oudina, F., Raza, J., Chamkha, A.: Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method. Heat Transf. Asian Res. 48(4), 1225–1244 (2019)

    Article  Google Scholar 

  3. Mebarek-Oudina, F.: Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng. Sci. Technol. Int. J. 20(4), 1324–1333 (2017)

    Google Scholar 

  4. Farajpour, M.R., Shahidi, A.R., Tabataba’i-Nasab, F., Farajpour, A.: Vibration of initially stressed carbon nanotubes under magneto-thermal environment for nanoparticle delivery via higher-order nonlocal strain gradient theory. Eur. Phys. J. Plus 133(6), 1–15 (2018)

    Article  Google Scholar 

  5. Hasikin, K., Soin, N., Ibrahim, F.:Modeling of a polyimide diaphragm for an optical pulse pressure sensor. In: 2009 International Conference for Technical Postgraduates (TECHPOS). IEEE (2009)

  6. Thielicke, E., Obermeier, E.: Microactuators and their technologies. Mechatronics 10(4), 431–455 (2000). https://doi.org/10.1016/S0957-4158(99)00063-X

    Article  Google Scholar 

  7. Merchant, R., Gandhi, G., Allahbadia, G.N.: In vitro fertilization/intracytoplasmic sperm injection for male infertility. Indian J Urol. IJU J. Urol. Soc. India 27(1), 121 (2011)

    Article  Google Scholar 

  8. Karkoub, M., Zribi, M.: Robust control of an electrostatic microelectromechanical actuator. Open Mech. J 2(1), 12–20 (2008)

    Article  Google Scholar 

  9. Farhan, M., Omar, Z., Mebarek-Oudina, F., Raza, J., Shah, Z., Choudhari, R.V., Makinde, O.D.: Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator. Comput. Math. Model. 31(1), 116–132 (2020)

    Article  MathSciNet  Google Scholar 

  10. Zuhra, S., Khan, N.S., Khan, M.A., Islam, S., Khan, W., Bonyah, E.: Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles. Results Phys. 8, 1143–1157 (2018)

    Article  Google Scholar 

  11. Khan, N.S., Gul, T., Khan, M.A., Bonyah, E., Islam, S.: “Mixed convection in gravity-driven thin film non-Newtonian nanofluids flow with gyrotactic microorganisms. Results Phys. 7, 4033–4049 (2017)

    Article  Google Scholar 

  12. Farajpour, A., Rastgoo, A., Mohammadi, M.: Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Phys. B 509, 100–114 (2017)

    Article  Google Scholar 

  13. Vagia, M., Tzes, A.: Robust PID control design for an electrostatic micromechanical actuator with structured uncertainty. IET Control Theory Appl. 2(5), 365–373 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kovacs, T.A.G.: Micro-machined Transducers Sourcebook. McGraw-Hill, New York (1998)

    Google Scholar 

  15. Seeger, J.I., Boser, B.E.: Charge control of parallel-plate, electrostatic actuators and the tip-in instability. J. Microelectromechanical Syst. 12(5), 656–671 (2003)

    Article  Google Scholar 

  16. Hung, E.S., Senturia, S.D.: Extending the travel range of analog-tuned electrostatic actuators. J. Microelectromechanical Syst. 8(4), 497–505 (1999). https://doi.org/10.1109/84.809065

    Article  Google Scholar 

  17. Borovic, B., Liu, A.Q., Popa, D., Cai, H., Lewis, F.L.: Open-loop versus closed-loop control of MEMS devices: choices and issues. J. Micromechanics Microengineering 15(10), 1917–1924 (2005). https://doi.org/10.1088/0960-1317/15/10/018

    Article  Google Scholar 

  18. Seeger, J.I., Crary, S.B.: Stabilization of electrostatically actuated mechanical devices. In: International Conference on Solid-State Sensors and Actuators, Proceedings, 2, pp. 1133–1136, (1997) https://doi.org/10.1109/sensor.1997.635402.

  19. Chan, E.K., Dutton, R.W.: Electrostatic micromechanical actuator with extended range of travel. J. Microelectromechanical Syst. 9(3), 321–328 (2000). https://doi.org/10.1109/84.870058

    Article  Google Scholar 

  20. Zhu, G., Montréal, P., Lévine, J., Praly, L.: Improving the Performance of an Electrostatically Actuated MEMS by Nonlinear Control: Some Advances and Comparisons. (2005) ieeexplore.ieee.org, doi: https://doi.org/10.1109/CDC.2005.1583377.

  21. Zhu, G., Penet, J., Saydy, L.: A. C. Conference, and undefined 2006, “Robust control of an electrostatically actuated MEMS in the presence of parasitics and parametric uncertainties,” ieeexplore.ieee.org, (2006) Available: https://ieeexplore.ieee.org/abstract/document/1656386/.

  22. Zhu, G., Lévine, J., Praly, L.: On the Differential Flatness and Control of Electrostatically Actuated MEMS. Accessed: Dec. 30, 2020. [Online]. (2020) Available: https://ieeexplore.ieee.org/abstract/document/1470341/.

  23. Dong, L., Zheng, Q., Gao, Z.: On control system design for the conventional mode of operation of vibrational gyroscopes. IEEE Sens. J. 8(11), 1871–1878 (2008)

    Article  Google Scholar 

  24. Yu, X., Kaynak, O.: Sliding mode control with soft computing: A survey. IEEE Trans. Ind. Electron. 56(9), 3275–3285 (2009)

    Article  Google Scholar 

  25. Wu, Y., Yu, X., Man, Z.: Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 4(5), 281–287 (1998)

    Article  MathSciNet  Google Scholar 

  26. Al-Ghanimi, A., Zheng, J., Man, Z.: Robust and fast non-singular terminal sliding mode control for piezoelectric actuators. IET Control Theory Appl. 9(18), 2678–2687 (2015). https://doi.org/10.1049/iet-cta.2015.0401

    Article  MathSciNet  MATH  Google Scholar 

  27. Du, H., Yu, X., Chen, M.Z.Q., Li, S.: Chattering-free discrete-time sliding mode control. Automatica 68, 87–91 (2016)

    Article  MathSciNet  Google Scholar 

  28. Baek, S., Baek, J., Han, S.: An adaptive sliding mode control with effective switching gain tuning near the sliding surface. IEEE Access 7, 15563–15572 (2019)

    Article  Google Scholar 

  29. Sarkar, M.K., Dev, A., Asthana, P., Narzary, D.: Chattering free robust adaptive integral higher order sliding mode control for load frequency problems in multi-area power systems. IET Control Theory Appl. 12(9), 1216–1227 (2018)

    Article  MathSciNet  Google Scholar 

  30. Senturia, S.D.: Microsystem Design. Kluwer Academic Publishers, Norwell, MA (2001)

    Google Scholar 

  31. Moosavian, S.A.A., Khalaji, A.K., Tabataba'i-Nasab, F.S.: October. Tracking control of an underwater robot in the presence of obstacles. In 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), pp. 298–303. IEEE (2017)

  32. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Naserifar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Stability analysis

Appendix 1: Stability analysis

The closed-loop stability and the convergence of the tracking errors using the adaptive terminal sliding mode control law (20) with the adaptation rules (21) for the MEMS actuator (5) is here.

Proposition 1

The ATSMC law (20) with the adaptation rules (21) for the MEMS Actuator (5) guarantees the tracking errors’ asymptotic convergence to the origin while existing uncertainties and external disturbances.

Proof

Suppose the following Lyapunov function case:

$$ V_{{{\text{ATSMC}}}} \left( {\hat{\kappa }~.~S_{{{\text{ATSMC}}}} } \right) = \frac{1}{2}S_{{{\text{ATSMC}}}}^{T} S_{{{\text{ATSMC}}}} + \frac{1}{2}Q^{T} Q $$
(23)

where

$$ Q = \beta ^{{ - 1}} \tilde{\kappa } $$
(24)

The time derivative of \(V_{{{\text{ATSMC}}}}\) can be written as follows

$$ \begin{aligned} \dot{V}_{{{\text{ATSMC}}}} \left( {\hat{\kappa }~.~S_{{{\text{ATSMC}}}} } \right) &= S_{{{\text{ATSMC}}}}^{T} ~\dot{S}_{{{\text{ATSMC}}}} + Q^{T} \dot{Q} \hfill \\ &= S_{{{\text{ATSMC}}}}^{T} \left\{ - 2\varsigma \omega \left( { - 2\varsigma \omega x_{3} - \omega ^{2} \left( {x_{2} - \bar{l}_{e} } \right) - \frac{1}{2}x_{1}^{2} } \right) - \omega ^{2} \left( { - x_{3} } \right) \right.\hfill \\ &- x_{1} \left( { - x_{1} x_{2} + u} \right) - \dddot{x}_{d} \hfill \\ &+ \lambda _{1} \left( { - 2\varsigma \omega x_{3} - \omega ^{2} \left( {x_{2} - \bar{l}_{e} } \right) - \frac{1}{2}x_{1}^{2} - \ddot{x}_{d} } \right) \hfill \\ &\left.+ \lambda _{2} \left( { - x_{3} - \dot{x}_{d} } \right) + 0.6\lambda _{3} \left( {e_{x} ^{{ - 0.4}} } \right)\right\} + + Q^{T} \dot{Q} \hfill \\ \end{aligned} $$
(25)

Substitution from (14), we can conclude

$$ \begin{aligned} \dot{V}_{{{\text{ATSMC}}}} \left( {\hat{\kappa }~.~S_{{{\text{ATSMC}}}} } \right) &= S_{{{\text{ATSMC}}}}^{T} ~\dot{S}_{{{\text{ATSMC}}}} + + Q^{T} \dot{Q} \hfill \\ &= S_{{{\text{ATSMC}}}}^{T} \left\{ - 2\varsigma \omega \left( { - 2\varsigma \omega x_{3} - \omega ^{2} \left( {x_{2} - \bar{l}_{e} } \right) - \frac{1}{2}x_{1}^{2} } \right) - \omega ^{2} \left( { - x_{3} } \right)\right. \hfill \\& - x_{1} ( - x_{1} x_{2} + \{ \frac{1}{{x_{1} }}\{ x_{1}^{2} x_{2} \hfill \\ & + - 2\varsigma \omega \left( { - 2\varsigma \omega x_{3} - \omega ^{2} \left( {x_{2} - \bar{l}_{e} } \right) - \frac{1}{2}x_{1}^{2} } \right) - \omega ^{2} \left( {x_{3} } \right) + \dddot{x}_{d} \hfill \\ &- \lambda _{1} \left( { - 2\varsigma \omega x_{3} - \omega ^{2} \left( {x_{2} - \bar{l}_{e} } \right) - \frac{1}{2}x_{1}^{2} - \ddot{x}_{d} } \right) - \lambda _{2} \left( { - x_{3} - \dot{x}_{d} } \right) \hfill \\ &- 0.6\lambda _{3} \left( {e_{x} ^{{ - 0.4}} } \right)\} + \frac{1}{{x_{1} }}\left\{ {\hat{\kappa }sign~\left( {S_{{{\text{ATSMC}}}} } \right)} \right\}\} ) - \dddot{x}_{d} \hfill \\& + \lambda _{1} \left( { - 2\varsigma \omega x_{3} - \omega ^{2} \left( {x_{2} - \bar{l}_{e} } \right) - \frac{1}{2}x_{1}^{2} - \ddot{x}_{d} } \right) + \lambda _{2} \left( { - x_{3} - \dot{x}_{d} } \right) \hfill \\ &\left.+ 0.6\lambda _{3} \left( {e_{x} ^{{ - 0.4}} } \right)\right\} + Q^{T} \dot{Q} = S_{{{\text{ATSMC}}}}^{T} \left\{ { - \hat{\kappa }sign~\left( {S_{{{\text{ATSMC}}}} } \right)} \right\} + Q^{T} \dot{Q} \hfill \\ \end{aligned} $$
(26)

Consequently,

$$ \dot{V}_{{{\text{ATSMC}}}} \left( {\hat{\kappa }~.~S_{{{\text{ATSMC}}}} } \right) \le S_{{{\text{ATSMC}}}}^{T} \left\{ { - \hat{\kappa }sign~\left( {S_{{{\text{ATSMC}}}} } \right)} \right\} + \tilde{\kappa }~\beta ^{{ - 1}} \dot{\tilde{\kappa }} = - \hat{\kappa }\left| {S_{{{\text{ATSMC}}}} } \right| + \tilde{\kappa }~\left| {S_{{{\text{ATSMC}}}} } \right| = - \kappa \left| {S_{{{\text{ATSMC}}}} } \right| $$
(27)

By choosing appropriate gain, \(\dot{V}_{{{\text{ATSMC}}}} \left( {\hat{\kappa }~.~S_{{{\text{ATSMC}}}} } \right)~\) will be negative semidefinite. Consequently, \(\dot{V}_{{{\text{ATSMC}}}} \left( {\hat{\kappa }~.~S_{{{\text{ATSMC}}}} } \right)\) will be globally bounded. Therefore, tracking errors using Barbalat’s Lemma asymptotically converges to the origin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaee-Nasab, F.S., Naserifar, N. Nanopositioning control of an electrostatic MEMS actuator: adaptive terminal sliding mode control approach. Nonlinear Dyn 105, 213–225 (2021). https://doi.org/10.1007/s11071-021-06637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06637-3

Keywords

Navigation