Skip to main content
Log in

Observer-based continuous adaptive sliding mode control for soft actuators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fabricated by high elastic materials, soft actuators provide a prominent solution for soft rehabilitation gloves, soft graspers and locomotion robots. However, the control of soft actuators is a grant challenge due to dynamic modeling error and unavailable system states. This paper proposes an observer-based continuous adaptive sliding mode controller for soft actuators in the presence of system uncertainties without knowledge of its upper bound in prior. By exploiting a novel nonsingular fast terminal sliding mode (NFTSM) surface and a high-order sliding mode (HOSM) observer, the proposed control scheme features adaptive-tuning gains, continuity, singularity-free, stronger robustness and higher tracking accuracy. The stability of the proposed controller is analyzed by the Lyapunov method. Corresponding comparative simulations and experiments of a soft pneumatic network actuator verify the effectiveness and related features of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Heung, K.H.L., Tong, R.K.Y., Lau, A.T.H., Li, Z.: Robotic glove with soft-elastic composite actuators for assisting activities of daily living. Soft Robot. 6(2), 289–304 (2019)

    Article  Google Scholar 

  2. Tang, Z.Q., Heung, H.L., Tong, K.Y., Li, Z.: Model-based online learning and adaptive control for a human-wearable soft robot integrated system. Int. J. Robot Res. 38(9), 1–21 (2019)

    Google Scholar 

  3. Fang, J., Yuan, J., Wang, M., Xiao, L.: Novel accordion-inspired foldable pneumatic actuators for knee assistive devices. Soft Robot. 7(1), 95–108 (2019)

    Article  Google Scholar 

  4. Katzschmann, R.K., DelPreto, J., MacCurdy, R., Rus, D.: Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3(16), eaar3449 (2018)

  5. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  6. Thuruthel, T.G., Shih, B., Laschi, C., Tolley, M.T.: Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 4(26), eaav1488 (2019)

  7. Melingui, A., Lakhal, O., Daachi, B., Mbede, J.B., et al.: Adaptive neural network control of a compact bionic handling arm. IEEE-Asme T Mech. 20(6), 2862–2875 (2015)

    Article  Google Scholar 

  8. Fang, G., Wang, X., Wang, K., Kit-Hang, L., et al.: Vision-based online learning kinematic control for soft robots using local gaussian process regression. IEEE Robot. Autom. Lett. 4(2), 1194–1201 (2019)

    Article  Google Scholar 

  9. Thieffry, M., Kruszewski, A., Duriez, C., Guerra, T.M.: Control design for soft robots based on reduced-order model. IEEE Robot. Autom. Lett. 4(1), 25–32 (2019)

    Google Scholar 

  10. Best, C.M., Rupert, L., Killpack, M.D.: Comparing model-based control methods for simultaneous stiffness and position control of inflatable soft robots. Int. J. Robot. Res. 3(1), 1–24 (2020)

    Google Scholar 

  11. Chen, W., Xiong, C., Liu, C., Li, P.: Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor. Soft Robot. 6(4), 495–506 (2019)

    Article  Google Scholar 

  12. Zolfagharian, A., Kaynak, A., Noshadi, A., Kouzani, A.Z.: System identification and robust tracking of a 3D printed soft actuator. Smart Mater. Struct. 28(7), 075025–075036 (2019)

    Article  Google Scholar 

  13. Khawwaf, J., Zheng, J.C., Wang, H., Man, Z.H.: Practical model-free robust estimation and control design for an underwater soft IPMC actuator. IET Control. Theory A 14(11), 1508–1515 (2020)

    Article  Google Scholar 

  14. Wang, Y., Ye, W., Zhang, Y., Lai, X.: Modeling and tracking control for soft robots of dielectric elastomer actuators. Control Theory Appl. 37(4), 871–880 (2020)

    MATH  Google Scholar 

  15. Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B.: Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE T Ind. Electron. 63(6), 3677–3685 (2016)

    Article  Google Scholar 

  16. Wang, W., Lin, H., Yang, H., Liu, W., et al.: Second-order sliding mode-based direct torque control of variable-flux memory machine. IEEE Access 8, 34981–34992 (2020)

    Article  Google Scholar 

  17. Pati, A.K., Sahoo, N.C.: A super-twisting sliding mode observer for boost inverter-based hybrid photovoltaic-battery system control. T I Meas. Control. 4(1), 1–16 (2020)

    Google Scholar 

  18. Cao, G., Xie, C., Liu, Y.: Observer-based adaptive sliding mode tracking control for soft bending actuators, Proc. 2020 Chinese Automation Congress (CAC), pp. 5789-5794

  19. Han, Y., Kao, Y., Gao, C.: Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances. Automatica 75, 210–216 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, Y., Su, C.-Y., Kao, Y., Gao, C.: Non-fragile sliding mode control of discrete switched singular systems with time-varying delays. IET Control Theory A 14(5), 726–737 (2020)

    Article  Google Scholar 

  21. Zhen, Z., Yu, C., Jiang, S., Jiang, J.: Adaptive super-twisting control for automatic carrier landing of aircraft. IEEE Trans. Aerospace Electron. Syst. 56(2), 984–997 (2020)

    Article  Google Scholar 

  22. Zhao, Y., Zhang, F., Huang, P., Liu, X.: Impulsive super-twisting sliding mode control for space debris capturing via tethered space net robot. IEEE T Ind. Electron. 67(8), 6874–6882 (2020)

    Article  Google Scholar 

  23. Lochan, K., Singh, J.P., Roy, B.K., Subudhi, B.: Adaptive time-varying super-twisting global SMC for projective synchronisation of flexible manipulator. Nonlinear Dynam. 93(4), 2071–2088 (2018)

    Article  MATH  Google Scholar 

  24. Zheng, S., Niu, X., Peng, C.: Adaptive super-twisting-like sliding mode control with prescribed performance for robot manipulators. J. Mech. Med. Biol. 19(8), 1940053–1940068 (2019)

    Article  Google Scholar 

  25. Raj, K., Muthukumar, V., Singh, S.N., Lee, K.W.: Finite-time sliding mode and super-twisting control of fighter aircraft. Aerospace Sci. Technol. 82–83, 487–498 (2018)

    Article  Google Scholar 

  26. Chen, H., Song, S., Li, X.: Robust spacecraft attitude tracking control with integral terminal sliding mode surface considering input saturation. T I Meas. Control. 41(2), 405–416 (2019)

    Article  Google Scholar 

  27. Ge, P., Dou, X., Quan, X., Hu, Q.: Extended-state-observer-based distributed robust secondary voltage and frequency control for an autonomous microgrid. IEEE Trans. Sustain. Energy 11(1), 195–205 (2020)

    Article  Google Scholar 

  28. Wang, Y.Y., Zhang, R., Ju, F., Zhao, J.B., et al.: A light cable-driven manipulator developed for aerial robots: structure design and control research. Int. J. Adv. Robot. Syst. 17(3), 1–14 (2020)

    Article  Google Scholar 

  29. Zhang, K., Duan, G.: Output-feedback super-twisting control for line-of-sight angles tracking of non-cooperative target spacecraft. ISA T 94(1), 17–27 (2019)

    Article  Google Scholar 

  30. Munoz, F., Espinoza, E.S., Gonzalez, I., Salazar, S., et al.: Robust trajectory tracking for unmanned aircraft systems using a nonsingular terminal modified super-twisting sliding mode controller. J. Intell. Robot. Syst. 93(1–2), 55–72 (2019)

    Article  Google Scholar 

  31. Zhang, H.Q., Fang, H.R., Zou, Q.: Non-singular terminal sliding mode control for redundantly actuated parallel mechanism. Int. J. Adv. Robot. Syst. 17(2), 1–13 (2020)

    Article  Google Scholar 

  32. Nagamani, G., Karthik, C., Joo, Y.H.: Event-triggered observer-based sliding mode control for t-s fuzzy systems via improved relaxed-based integral inequality. J. Franklin Inst. 357(14), 9543–9567 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, H.Y., Shi, P., Yao, D.Y., Wu, L.G.: Observer-based adaptive sliding mode control for nonlinear markovian jump systems. Automatica 64, 133–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y.Y., Zhu, K.W., Chen, B., Jin, M.L.: Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators. ISA T 98(3), 483–495 (2020)

    Article  Google Scholar 

  36. Della Santina, C., Bicchi, A., Rus, D.: On an improved state parametrization for soft robots with piecewise constant curvature and its use in model based control. IEEE Robot. Autom. Lett. 5(2), 1001–1008 (2020)

    Article  Google Scholar 

  37. Della Santina, C., Katzschmann, R.K., Bicchi, A., Rus, D.: Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int. J. Robot. Res. 3(1), 1–24 (2020)

    Google Scholar 

  38. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cruz-Zavala, E., Moreno, J.A.: Homogeneous high order sliding mode design: a Lyapunov approach. Automatica 80(3), 232–238 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Arie, L.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control. 76(9–10), 924–941 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Hendel, R., Khaber, F., Essounbouli, N.: Adaptive high-order sliding mode controller-observer for MIMO uncertain nonlinear systems. Asian J. Control. 00, 1–21 (2019)

    MATH  Google Scholar 

  42. An-Min, Z., Kumar, K.D., Zeng-Guang, H., Xi, L.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network. IEEE Trans. Syst. Man Cybern. Syst. 41(4), 950–963 (2011)

    Article  Google Scholar 

  43. Liu, J., Sun, M., Chen, Z., Sun, Q.: Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. Nonlinear Dynam. 99(4), 2785–2799 (2020)

    Article  MATH  Google Scholar 

  44. Li, B., Qin, K., Xiao, B., Yang, Y.: Finite-time extended state observer based fault tolerant output feedback control for attitude stabilization. ISA T 91(3), 11–20 (2019)

    Article  Google Scholar 

  45. Ullah, I., Pei, H.L.: Fixed time disturbance observer based sliding mode control for a miniature unmanned helicopter hover operations in presence of external disturbances. IEEE Access 8, 73173–73181 (2020)

    Article  Google Scholar 

  46. Wang, H., Shi, L.H., Man, Z.H., Zheng, J.C., et al.: Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE T Ind. Electron. 65(9), 7160–7172 (2018)

    Article  Google Scholar 

  47. Wang, T., Zhang, Y., Zhu, Y., Zhu, S.: A computationally efficient dynamical model of fluidic soft actuators and its experimental verification. Mechatronics 58(1), 1–8 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project (No. 2020YFB1313701), the National Natural Science Foundation of China (No. 6160 3345, 62003309), the Outstanding Foreign Scientist Support Project of Henan Province (No. GZS2019008) and Science & Technology Research Project in Henan Province of China (No. 202102210098).

Author information

Authors and Affiliations

Authors

Contributions

No competing financial interest exists. Some or all data, models or code generated or used during the study are available from the corresponding author by request.

Corresponding author

Correspondence to Yanhong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

According to the update law (17) and (20), some auxiliary variances are defined as

$$\begin{aligned} \rho _1=\sqrt{z} s^{[\frac{1}{2}]},\rho _2=s,\rho _3=\xi . \end{aligned}$$
(38)

Therefore,

$$\begin{aligned}&\dfrac{z}{\left| \rho _1\right| }\rho _1\rho _2=\zeta \rho _1\rho _1, \dfrac{z }{\left| \rho _1\right| }\rho _2\rho _2=z \rho _1\rho _2, \nonumber \\&\quad \dfrac{z }{\left| \rho _1\right| }\rho _2\rho _3=z \rho _1\rho _3, \end{aligned}$$
(39)

and

$$\begin{aligned} \begin{array}{l} {\dot{\rho }}\triangleq \begin{bmatrix}{{\dot{\rho }}}_1\\ {{\dot{\rho }}}_2\\ {{\dot{\rho }}}_3\\ \end{bmatrix} =-\dfrac{z }{2\left| \rho _1\right| }{\underbrace{\begin{bmatrix}k_{z1}&{}k_{z2}&{}-1\\ 0&{}0&{}0\\ 2k_{z3}&{}0&{}0\\ \end{bmatrix}}_{A_1}}\begin{bmatrix}\rho _1\\ \rho _2\\ \rho _3\\ \end{bmatrix} \\ \qquad -{\underbrace{\begin{bmatrix}0&{}0&{}0\\ z k_{z1}&{}z k_{z2}&{}-z \\ 0&{} k_{z4}z &{}0\\ \end{bmatrix}}_{A_2}}\begin{bmatrix}\rho _1\\ \rho _2\\ \rho _3\\ \end{bmatrix}+{\underbrace{\begin{bmatrix}\dfrac{{\dot{z}}}{2z }\rho _1\\ \dfrac{{\dot{z}}}{z }\rho _2\\ d_2\\ \end{bmatrix}}_{A_3}} \\ =-\dfrac{z }{2\left| \rho _1\right| }A_1\rho -A_2\rho +A_3. \end{array}\nonumber \\ \end{aligned}$$
(40)

The candidate Lyapunov function is chosen as,

$$\begin{aligned} V_1=\dfrac{1}{2}\rho ^TP\rho , \end{aligned}$$
(41)

where \(P=\begin{bmatrix}4k_{z3}+k_{z1}^2&{}k_{z1}k_{z2}&{}-k_{z1}\\ k_{z1}k_{z2}&{}k_{z2}^2+4k_{z4}&{}-k_{z2}\\ -k_{z1}&{}-k_{z2}&{}2\\ \end{bmatrix}\) is positive definite.

The derivative of \(V_1\) with respect to time along with equations (40) is,

$$\begin{aligned} \begin{array}{l} {\dot{V}}_1=-\dfrac{\zeta }{2\left| \rho _1\right| }\rho ^TPA_1\rho -\rho ^TPA_2\rho +\rho ^TPA_3 \\ \quad = -\zeta \rho ^T\begin{bmatrix}k_{z1}^2k_{z2}&{}k_{z1}k_{z2}^2+2k_{z1}k_{z4}&{}-k_{z1}k_{z2}\\ *&{}k_{z2}\left( k_{z2}^2+4k_{z4}\right) &{}-k_{z2}^2-k_{z4}\\ *&{}*&{}k_{z2}\\ \end{bmatrix}\rho \\ \qquad -\dfrac{\zeta }{2\left| \rho _1\right| }\rho ^T\begin{bmatrix}k_{z1}^3+2k_{z3}k_{z1}&{}(k_{z1}^2+k_{z3})k_{z2}&{}-k_{z1}^2\\ *&{}k_{z1}k_{z2}^2&{}-k_{z1}k_{z2}\\ *&{}*&{}k_{z1}\\ \end{bmatrix}\rho \\ \\ \qquad +\dfrac{{\dot{z}}}{2z }\rho ^T{\underbrace{\begin{bmatrix}4k_{z2}+k_{z1}^2&{}\dfrac{3}{2}k_{z1}k_{z3}&{}-\dfrac{1}{2}k_{z1} \\ *&{} 2k_{z3}^2+8k_{z4} &{}-k_{z3}\\ *&{}*&{}0\\ \end{bmatrix}}_{A_3'}}\rho \\ \qquad {\underbrace{-k_{z1}\rho _1d_2-k_{z2}\rho _2d_2+2\rho _3d_2}_\varDelta }.\nonumber \end{array}\!\!\!\!\!\!\!\\ \end{aligned}$$
(42)

The time derivative of the \(V_1\) is further equal to

$$\begin{aligned} \begin{array}{l}{\dot{V}}_1 =\dfrac{{\dot{\zeta }}}{2\zeta }\rho ^TA_3'\rho +\varDelta \\ -\dfrac{\zeta \rho ^T}{2\left| \rho _1\right| }{\underbrace{\begin{bmatrix}k_{z1}^3+2k_{z3}k_{z1}&{}0&{}-k_{z1}^2\\ *&{}5k_{z1}k_{z2}^2+8k_{z1}k_{z4}&{}-3k_{z1}k_{z2}\\ *&{}*&{}k_{z1}\\ \end{bmatrix}}_{A_4}}\rho \\ -\zeta \rho ^T{\underbrace{\begin{bmatrix}2k_{z1}^2k_{z2}+k_{z3}k_{z2}&{}0&{}0\\ *&{}k_{z2}\left( k_{z2}^2+4k_{z4}\right) &{}-k_{z2}^2-k_{z4}\\ *&{}*&{}k_{z2}\\ \end{bmatrix}}_{A_5}}\rho \\ \qquad =-\dfrac{\zeta }{2\left| \rho _1\right| }\rho ^TA_4\rho -\zeta \rho ^TA_5\rho +\dfrac{{\dot{\zeta }}}{2\zeta }\rho ^TA_3'\rho +\varDelta .\nonumber \end{array}\!\!\!\!\!\!\!\\ \end{aligned}$$
(43)

The * in the matrices \(A_4\) and \(A_5\) denotes the symmetrical term of the matrix. The matrices \(A_4\) and \(A_5\) are positive definite if the inequality (18) holds. Further, noticing that the following inequalities are satisfied,

$$\begin{aligned}&\lambda _{min}\{A_3'\}||\rho ||^2\le \rho ^TA_3'\rho \le \lambda _{max}\{A_3'\}||\rho ||^2, \nonumber \\&\lambda _{min}\{A_4\}||\rho ||^2\le \rho ^TA_4\rho \le \lambda _{max}\{A_4\}||\rho ||^2, \nonumber \\&\lambda _{min}\{A_5\}||\rho ||^2\le \rho ^TA_5\rho \le \lambda _{max}\{A_5\}||\rho ||^2, \nonumber \\&\lambda _{min}\{P_a\}||\rho ||^2\le V_1\le \lambda _{max}\{P_a\}||\rho ||^2, \end{aligned}$$
(44)

The derivative of the Lyapunov function \(V_1\) is

$$\begin{aligned} {\dot{V}}_1= & {} -\dfrac{z }{2\left| \rho _1\right| }\rho ^TA_4\rho -\rho ^TA_5\rho +\dfrac{{\dot{z}}}{2z }\rho ^TA_3'\rho +\varDelta \nonumber \\\le & {} -\dfrac{z }{2\left| \rho _1\right| }\rho ^TA_4\rho -\rho ^TA_5\rho +\dfrac{{\dot{z}}}{2z }\lambda _{max}\{A_3'\}\rho ^T\rho \nonumber \\&+\sqrt{k_{z1}^2+k_{z2}^2+4} D ||\rho || \nonumber \\\le & {} -\dfrac{z }{2\left| \rho _1\right| }\lambda _{min}\{A_4\}\rho ^T\rho -\lambda _{min}\{A_5\}\rho ^T\rho \nonumber \\&+\dfrac{{\dot{z}}}{2z }\lambda _{max}\{A_3'\}\rho ^T\rho +\sqrt{k_{z1}^2+k_{z2}^2+4}D||\rho ||.\nonumber \\ \end{aligned}$$
(45)

The time derivative of the \(V_1\) is further equal to

$$\begin{aligned} {\dot{V}}_1\le & {} -\dfrac{z }{2|\rho _1|}\lambda _{min}\{A_4\}||\rho ||^2 +\sqrt{k_{z1}^2+k_{z2}^2+4}D||\rho || \nonumber \\&-\lambda _{min}\{A_5\}||\rho ||^2+\dfrac{{\dot{z}}}{2z }\lambda _{max}\{A_3'\}||\rho ||^2.\nonumber \\ \end{aligned}$$
(46)

In virtue of the well-known inequality \((\rho _1^2+\rho _2^2+\rho _3^2)^{\frac{1}{2}}\le (|\rho _1|+|\rho _2|+|\rho _3|)\), \(||\rho ||^2\ge ||\rho _1||^2\), \(\rho ^T\rho \le \dfrac{2}{\lambda _{min}\left( P_a\right) }V_1 \), \(-\rho ^T\rho \le -\dfrac{2}{\lambda _{max}\left( P_a\right) }V_1\), then the derivative satisfies

$$\begin{aligned} {\dot{V}}_1\le & {} -\left[ \dfrac{2\lambda _{min}\{A_5\}}{\lambda _{max}\left( P_a\right) }-\dfrac{{\dot{z}}\left| \lambda _{max}\{A_3'\}\right| }{z \lambda _{min}\left( P_a\right) }\right] V_1 \nonumber \\&-\left[ \dfrac{z }{2}\lambda _{min}\{A_4\}-\sqrt{k_{z1}^2+k_{z2}^2+4}D\right] \nonumber \\&\times \sqrt{\dfrac{2}{\lambda _{max}\left( P_a\right) }}V_1^{1/2}. \end{aligned}$$
(47)

Based on the update law \({\dot{z}}\ge 0\), then z is increased all the time except when \({\tilde{q}}_1=0\), so \(\varphi _1=\dfrac{2\lambda _{min}\{A_5\}}{\lambda _{max}\left( P_a\right) }-\dfrac{{\dot{z}}\left| \lambda _{max}\{A_3'\}\right| }{z \lambda _{min}\left( P_a\right) } \) and \( \varphi _2=\dfrac{z }{2}\lambda _{min}\{A_4\}-\sqrt{k_{z1}^2+k_{z2}^2+4}D\) will be positive in a short adjusting time. Then, \({\dot{V}}_{1}\le -\varphi _1V_{1}-\varphi _2{V}_{1}^{1/2}\). According to Lemma.1, the estimated errors converge to zero in finite time,

$$\begin{aligned} t_s\le \dfrac{2}{\varphi _1}\ln \dfrac{\varphi _1 V_1^{1/2}(x_0)+\varphi _2}{\varphi _2}. \end{aligned}$$
(48)

This completes the proof. \(\square \)

Appendix B

As discussed before, soft actuators are widely used as soft gloves. To mimic a human middle finger, the details of the simulated actuator are \(W=1.5\times 10^{-2}\text {m},L_1=8\times 10^{-3}\text {m},W_1=3\times 10^{-3}\text {m},W_2=2\times 10^{-3}\text {m},H_1=7\times 10^{-3}\text {m}, H_3=1.1\times 10^{-2}\text {m},L_{20}=2\times 10^{-3}\text {m},N=14, k_p=6.2\times 10^{-7}, G=2.387\times 10^{6}\text {Pa},m=4\times 10^{-2}\text {kg}\).

In numerical simulations, gains are introduced as follows. In the control scheme of STO+LSM, the gains of the STO (22) are \(k_{1a} = 7, k_{1b}=5, k_{1c}=4, k_{1d}=10\), the gain of the LSM (23) is \(\lambda _1 = 50\), and the gains of the STC (25) \(k_{1e} = k_{1ez}\sqrt{z}, k_{1f} = k_{11f}z, k_{1g} = k_{11g}z, k_{1h} = k_{11h}z^2\) are updated by \(k_{1ez}=1.8, k_{11f} = 3, k_{11g} = 0.05, k_{11h} = 2, k_{zu} = 0.5.\)

In the control scheme of HOSM+LSM, the gains of the HOSM observer (8) are \(k_{11}=7, k_{12} = 20, k_{21} = 10, k_{22} = 50, k_{31} = 20\), and the gains of LSM (23) and the updated law of controller are same to the STO+LSM.

In the control scheme of HOSM+NFTSM, parameters of NFTSM (31) are \(\lambda _{31} = 42,\lambda _{32} = 0.1\), and feedback gains of the STC (33) are \(a_3 = 2, b_3 = 1.5, k_{3g} = 6, k_{3h} = 2.\)

In the control scheme of HOSM+FTSM, the parameters of FTSM (27) are \(\lambda _{21}=14, \lambda _{22}=2\), and the gains of STC (29) are updated by \(k_{2e} = k_{02z}\sqrt{z}, k_{2f}= k_{02f}z, k_{2g}= k_{02g}z, k_{2h} = k_{02h}z^2\), where \(k_{02z}=1.8, k_{02f} = 3, k_{2g} = 0.05, k_{02h} = 2, k_{zu} = 0.5.\)

In the proposed control scheme, the observer (8), parameters of the NFTSM (10) are \(\lambda _{11} = 14,\lambda _{12}=2,\mu _1=4,\mu _2=2, a=0.75, b=1.5, b_2=0.5\), and the gains of proposed controller (15) are \(k_{s1} = k_{s01}\sqrt{z}, k_{s2} = k_{s02}z, k_{p1} = k_{p01}z, k_{p2} = k_{p02}z\), where \( k_{s01} = 2, k_{s02} = 3, k_{p01} = 0.05, k_{p02} = 2, k_{zu} = 0.5\).

In experiments, gains are selected after trial-in-errors. In the control scheme of STO+LSM, the gains of the STO (22), the LSM (23) and the STC (25) are \(k_{1a} = 4, k_{1b}=7, k_{1c}=4, k_{1d}=6, \lambda _1 = 12, k_{1ez}=0.6, k_{11f} = 2.1, k_{11g} = 0.03, k_{11h} = 1.2, k_{zu} = 0.3\). In the control scheme of HOSM+LSM, the gains of the HOSM observer (8) and the LSM (23) are \(k_{11}=3, k_{12} = 12, k_{21} = 5, k_{22} = 13, k_{31} = 0.5, \lambda _1 = 12\). In the control scheme of HOSM+NFTSM, parameters of NFTSM (31) are \(\lambda _{31} = 9,\lambda _{32} = 0.08\), and feedback gains of the STC (33) are \(a_3 = 1.8, b_3 = 1.5, k_{3g} = 4.5, k_{3h} = 2.3\). In the control scheme of HOSM+FTSM, parameters of FTSM (27) and STC (29) are \(\lambda _{21}=9, \lambda _{22}=2, k_{02z}=0.6, k_{02f} = 2.1, k_{2g} = 0.03, k_{02h} = 1.5, k_{zu} = 0.3.\) In the proposed control scheme, the observer (8), parameters of the NFTSM (10) and the controller (15) are \(\lambda _{11} = 11,\lambda _{12}=2,\mu _1=3.5,\mu _2=2, a=0.75, b=1.5, b_2=0.5, k_{s01} = 0.8, k_{s02} = 2.5, k_{p01} = 0.05, k_{p02} = 3, k_{zu} = 0.3\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Liu, Y., Jiang, Y. et al. Observer-based continuous adaptive sliding mode control for soft actuators. Nonlinear Dyn 105, 371–386 (2021). https://doi.org/10.1007/s11071-021-06606-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06606-w

Keywords

Navigation