Skip to main content
Log in

Perturbation incremental method of limit cycle for a nonlinear conveyor belt system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the limit cycle of a nonlinear conveyor belt system by utilizing the perturbation incremental method. We first divide the system into two subclasses. On account of the former is heteroclinic orbit and the latter is not, there are some differences in the process of employing this method. Next two steps are introduced, the perturbation part provides the zero-order perturbation solution and takes it as the initial value of the incremental part, and in the incremental part, the corresponding limit cycle is obtained by controlling the value of the parameter \(\lambda \). Under this circumstance, approximate analytical expressions of limit cycles of those classes are found. Then, numerical simulations are presented to prove the effectiveness of the results by comparison with numerical integration using the fourth-order Runge–Kutta method. Finally, some conclusions and expectations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vrande, V.D.B.B., Campen, V.D.D., Kraker, D.A.B.: Some aspects of the analysis of stick-slip vibrations with an application to drill strings, Asme Design Engineering Technical Conference: Detc. American Society of Mechanical Engineers (1997)

  2. Lu, C.: Existence of slip and stick periodic motions in a non-smooth dynamical system. Chaos Solitons Fractals 35(5), 949–959 (2008)

    Article  MathSciNet  Google Scholar 

  3. Galvanetto, U., Bishop, S.R., Briseghella, L.: Mechanical stick-slip vibrations. Int. J. Bifurc. Chaos (2011)

  4. Li, Q.H., Yan, Y.L., Wei, L.M., et al.: Complex bifurcations in a nonlinear system of moving belt. Acta Phys. Sinica 12, 73–82 (2013)

    Google Scholar 

  5. Yadav, O.P., Balaga, S.R., Vyas, N.S.: Forced vibrations of a spring-dashpot mechanism with dry friction and backlash, Int. J. Non-Linear Mech. (124) 103500 (2020)

  6. Leine, R.I., Campen, D.H.V., Kraker, A.D., et al.: Stick-Slip Vibrations Induced by Alternate Friction Models. Nonlinear Dyn. 16(1), 41–54 (1998)

    Article  Google Scholar 

  7. Stelter, K.P.: Stick-Slip vibrations and chaos. Philos. Trans. Phys. Sci. Eng. 332(1624), 89–105 (1990)

    MATH  Google Scholar 

  8. Luo, A.C.J., Huang, J.: Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator. Nonlinear Anal. Real World Appl. 13(1), 241–257 (2012)

    Article  MathSciNet  Google Scholar 

  9. Marques, F., Flores, P., Claro, J.P., et al.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  10. Metrikin, V.S., Nagayev, R.F., Stepanova, V.V.: Periodic and stochastic self-excited oscillations in a system with hereditary-type dry friction. J. Appl. Math. Mech. 60(5), 845–850 (1996)

    Article  MathSciNet  Google Scholar 

  11. YegIldirek, A., Lewis, F.L.: Feedback linearization using neural networks. Automatica 31(11), 1659–1664 (1995)

    Article  MathSciNet  Google Scholar 

  12. Xu, Y., Ma, S., Zhang, H.: Hopf bifurcation control for stochastic dynamical system with nonlinear random feedback method. Nonlinear Dyn. 65(1), 77–84 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Wu, Y., Isidori, A., Lu, R., et al.: Performance recovery of dynamic feedback-linearization methods for multivariable nonlinear systems. IEEE Trans. Autom. Control 65(4), 1365–1380 (2020)

    Article  MathSciNet  Google Scholar 

  14. Nandakumar, K., Chatterjee, A.: Continuation of limit cycles near saddle homoclinic points using splines in phase space. Nonlinear Dyn. 57(3), 383–399 (2009)

    Article  MathSciNet  Google Scholar 

  15. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  Google Scholar 

  16. Suchorsky, M.K., Rand, R.H.: A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dyn. 69(1–2), 313–324 (2012)

    Article  MathSciNet  Google Scholar 

  17. Patnaik, S., Semperlotti, F.: Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn. 100(3), 1–20 (2020)

  18. Patnaik, S., Hollkamp, J.P., Semperlotti, F.: Applications of variable-order fractional operators: a review. Proc. R. Soc. A Math. Phys. Eng. Sci. 476(2234), 20190498 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, H.T., Ding, Q.: Homotopy method for periodic solution of self-excited vibration of a dry-friction system. J. Vibr. Shock 08, 153–156 (2011)

    Google Scholar 

  20. Kim, W.J., Perkins, N.C.: Harmonic balance/Galerkin method for non-smooth dynamic systems. J. Sound Vibr. 261(2), 213–224 (2003)

    Article  MathSciNet  Google Scholar 

  21. Nandakumar, K., Chatterjee, A.: Higher-order Pseudoaveraging via harmonic balance for strongly nonlinear oscillations. J. Vibr. Acoust. 127(4), 416–419 (2005)

    Article  Google Scholar 

  22. Ding, J., Ding, W.C., Li, D.Y.: Numerical computation of hopf bifurcation and limit cycles for nonlinear conveyor belt system. Mach. Design Manuf. 2, 107–109+113 (2019)

    Google Scholar 

  23. Chan, H.S.Y., Chung, K.W., Xu, Z.: A perturbation-incremental method for strongly non-linear oscillators. Int. J. Non-Linear Mech. 31(1), 59–72 (1996)

    Article  MathSciNet  Google Scholar 

  24. Chan, H.S.Y., Chung, K.W., Xu, Z.: Stability and bifurcations of limit cycles by the perturbation-incremental method. J. Sound Vibr. 206(4), 589–604 (1997)

    Article  MathSciNet  Google Scholar 

  25. Chen, S.H., Huang, W.L., Xu, Z.: Calculation of the semi-stable limit cycle of lineard equation. J. Sun Yat sen Univ. 37(6), 5–9 (1998)

    Google Scholar 

  26. Xu, Z., Chen, S.H.: Calculation of limit cycles and homoclinic (heteroclinic) orbits of strongly nonlinear oscillators. J. Nonlinear Dyn. Eng. 4(4), 303–311 (1997)

    MathSciNet  Google Scholar 

  27. Cao, Y.Y.: The perturbation-incremental method for nonlinear dynamical systems, City University of Hong Kong (2012)

  28. Qin, B.W.: A study of homoclinic/Heteroclinic bifurcations, homoclinic-doubling bifurcations and cascades of dynamical systems using a perturbation-incremental method, City University of Hong Kong (2017)

  29. Chen, S.H., Huang, C.B., Xu, Z.: Calculation of limit cycles for a class of plane differential equations. J. Sun Yat sen Univ. 39(3), 1–5 (2000)

    Google Scholar 

  30. Xu, Z., Chen, S.H., Huang, W.L.: Expression and calculation of limit cycle. Acta Mathematicae Applicatae Sinica 4, 612–621 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Chen, C.L.: A perturbation-incremental (PI) method for strongly non-linear oscillators and systems of delay differential equations, City University of Hong Kong (2005)

  32. Wang, H.: Analytical solutions and bifurcation of nonlinear oscillators with discontinuities and impulsive systems by a perturbation-incremental method, City University of Hong Kong (2012)

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the National Natural Science Foundation of China (Nos.11701163, 11561022, 11901437) and Foundation for Technological Base and Talents of Guangxi, China (Nos.GuiKeAD20159028).

Funding

This work was supported by the National Natural Science Foundation of China (Nos.11701163, 11561022, 11901437) and Foundation for Technological Base and Talents of Guangxi, China (Nos.Gui KeAD20159028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhang Chen, Zuxiong Li or Yezhi Lin.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The research in this paper does not involve any ethical research.

Consent for publication

All authors agree to publish this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned}&\bigg (\frac{\partial V}{\partial a}\bigg )_0= \sum \limits _{k=1}^M\alpha _{2k} cos (2k\varphi ),\\&H(a_0,\Phi _0,\varphi )= \sum \limits _{k=1}^M(\gamma _{1,2k} cos(2k\varphi )+\delta _{1,2k}sin(2k\varphi )),\\&\bigg (\frac{\partial H}{\partial a}\bigg )_0= \sum \limits _{k=1}^M(\gamma _{2,2k} cos(2k\varphi )+\delta _{2,2k}sin(2k\varphi )),\\&\bigg (\frac{\partial H}{\partial \Phi }\bigg )_0= \sum \limits _{k=1}^M(\gamma _{3,2k} cos(2k\varphi )+\delta _{3,2k}sin(2k\varphi )),\\&\Phi _0 sin^2\varphi =\sum \limits _{k=1}^M(\zeta _{1,2k} cos(2k\varphi )+\eta _{1,2k}sin(2k\varphi )),\\&\frac{1}{2} (\Phi _0 sin\varphi )^2+V(a_0,\varphi )\\&\quad =\sum \limits _{k=1}^M(\zeta _{2,2k} cos(2k\varphi )+\eta _{2,2k}sin(2k\varphi )). \end{aligned}$$

Appendix B

$$\begin{aligned}&A_{0}=\alpha _{0}-\lambda \sum \limits _{k=1}^M \frac{1}{k}\delta _{2,k},\\&A_{2i}=\alpha _{i}+\lambda \frac{1}{2i}\delta _{2,2i},\\&A_{2(M+i-1)}=-\lambda \frac{1}{2i}\gamma _{2,2i},\\&A_{2(2M-1)}=\sum \limits _{k=1}^M (-1)^{k}\alpha _{k}-\lambda \sum \limits _{k=1}^M \frac{1}{k}[1-(-1)^{k}] \delta _{2,k},\\&A_{4M}=\gamma _{2,0},\\&A_{0,2j}=\frac{1}{2}(\zeta _{1,-2j}+\zeta _{1,2j})-\frac{1}{2}\lambda \\&\quad \sum \limits _{k=1}^M \frac{1}{k}(\delta _{3,2(k-j)}-\delta _{3,2(j-k)}+\delta _{3,2(j+k)}),\\&A_{2i,2j}=\frac{1}{2}(\zeta _{1,2(i-j)}+\zeta _{1,2(j-i)}+\zeta _{1,2(j+i)})\\&\quad +\frac{1}{4i}\lambda (\delta _{3,2(i-j)}-\delta _{3,2(j-i)}+\delta _{3,2(j+i)}),\\&A_{2(M+i-1),2j}=\frac{1}{2}(\eta _{1,2(i-j)}-\eta _{1,2(j-i)}+\eta _{1,2(j+i)})\\&\quad -\frac{1}{4i}\lambda (\gamma _{3,2(i-j)}+\gamma _{3,2(j-i)}+\gamma _{3,2(j+i)}),\\&A_{2(2M-1),2j}=-\frac{1}{2}\lambda \sum \limits _{k=1}^M\\&\quad \frac{[1-(-1)^{k}]}{k}(\delta _{3,2(k-j)}-\delta _{3,2(j-k)}+\delta _{3,2(j+k)}),\\&A_{4M,2j}=\frac{1}{2}(\gamma _{3,-2j}+\gamma _{3,2j}),\\&B_{0,2j}=\frac{1}{2}(\eta _{1,-2j}+\eta _{1,2j})-\frac{1}{2}\lambda \\&\quad \sum \limits _{k=1}^M \frac{1}{k}(\gamma _{3,2(k-j)}+\gamma _{3,2(j-k)}-\gamma _{3,2(j+k)}),\\&B_{2i,2j}=\frac{1}{2}(\eta _{1,2(j-i)}+\eta _{1,2(j+i)}-\eta _{1,2(i-j)})\\&\quad +\frac{1}{4i}\lambda (\gamma _{3,2(i-j)}+\gamma _{3,2(j-i)}-\gamma _{3,2(j+i)}),\\&B_{2(M+i-1),2j}=\frac{1}{2}(\zeta _{1,2(i-j)}+\zeta _{1,2(j-i)}-\zeta _{1,2(j+i)}))\\&\quad -\frac{1}{4i}\lambda (\delta _{3,2(j-i)}+\delta _{3,2(j+i)}-\delta _{3,2(i-j)}),\\&B_{2(2M-1),2j}=-\frac{1}{2}\lambda \sum \limits _{k=1}^M \frac{[1-(-1)^{k}]}{k}(\gamma _{3,2(k-j)}\\&\quad +\gamma _{3,2(j-k)}-\gamma _{3,2(j+k)}),\\&B_{4M,2j}=\frac{1}{2}(\delta _{3,2j}-\delta _{3,-2j}),\\&R_{0}=-\zeta _{2,0}+\lambda \sum \limits _{k=1}^M \frac{1}{k}\delta _{1,k},\\&R_{2i}=-\zeta _{2,2i}-\lambda \frac{1}{2i}\delta _{1,2i},\\&R_{2(M+i-1)}=-\eta _{2,2i}+\lambda \frac{1}{2i}\gamma _{1,2i},\\&R_{2(2M-1)}=-\sum \limits _{k=1}^M (-1)^{k}\zeta _{2,k}+\lambda \\&\quad \sum \limits _{k=1}^M \frac{[1-(-1)^{k}]}{k}\delta _{1,k},\\&R_{4M}=-\gamma _{1,0}, \end{aligned}$$

where

$$\begin{aligned} i=1,2,\ldots ,M-1, \ \ \ j=0,1,2,\ldots ,M-1, \end{aligned}$$

for \(k<0\), \(\zeta _{1,k}=\eta _{1,k}=\gamma _{3,k}=\delta _{3,k}=0\).

Appendix C

$$\begin{aligned}&\bigg (\frac{\partial V}{\partial a}\bigg )_0= \sum \limits _{k=1}^M\alpha _{k} cos k\varphi ,\\&\bigg (\frac{\partial V}{\partial b}\bigg )_0= \sum \limits _{k=1}^M\beta _{k} cos k\varphi ,\\&H(a_0,\Phi _0,\varphi )= \sum \limits _{k=1}^M(\gamma _{1,k} cos k\varphi +\delta _{1,k}sin k\varphi ),\\&\bigg (\frac{\partial H}{\partial a}\bigg )_0= \sum \limits _{k=1}^M(\gamma _{2,k} cos k\varphi +\delta _{2,k}sin k\varphi ),\\&\bigg (\frac{\partial H}{\partial b}\bigg )_0= \sum \limits _{k=1}^M(\gamma _{3,k} cos k\varphi +\delta _{3, k}sin k\varphi ),\\&\bigg (\frac{\partial H}{\partial \Phi }\bigg )_0= \sum \limits _{k=1}^M(\gamma _{4,k} cos k\varphi +\delta _{4,k}sin k\varphi ),\\&\Phi _0 sin^2\varphi =\sum \limits _{k=1}^M(\zeta _{1,k} cos k\varphi +\eta _{1,k}sin k\varphi ),\\&\frac{1}{2} (\Phi _0 sin\varphi )^2+V(a_0,\varphi )\\&\quad =\sum \limits _{k=1}^M(\zeta _{2,k} cos k\varphi +\eta _{2,k}sin k\varphi ). \end{aligned}$$

Appendix D

$$\begin{aligned}&A_{0}=\alpha _{0}-\lambda \sum \limits _{k=1}^M \frac{1}{k}\delta _{2,k},\\&A_{i}=\alpha _{i}+\lambda \frac{1}{i}\delta _{2,i},\\&A_{M+i}=-\lambda \frac{1}{i}\gamma _{2,i},\\&A_{2M+1}=\sum \limits _{k=1}^M (-1)^{k}\alpha _{k}-\lambda \sum \limits _{k=1}^M \frac{1}{k}[1-(-1)^{k}] \delta _{2,k},\\&A_{2M+2}=\gamma _{2,0},\\&B_{0}=\beta _{0}-\lambda \sum \limits _{k=1}^M \frac{1}{k}\delta _{3,k},\\&B_{i}=\beta _{i}+\lambda \frac{1}{i}\delta _{3,i},\\&B_{M+i}=-\lambda \frac{1}{i}\gamma _{3,i},\\&B_{2M+1}=\sum \limits _{k=1}^M (-1)^{k}\beta _{k}-\lambda \sum \limits _{k=1}^M \frac{1}{k}[1-(-1)^{k}] \delta _{3,k},\\&B_{2M+2}=\gamma _{3,0},\\&A_{0,j}=\frac{1}{2}(\zeta _{1,-j}+\zeta _{1,j})-\frac{1}{2}\lambda \sum \limits _{k=1}^M\\&\quad \frac{1}{k}(\delta _{4,k-j}-\delta _{4,j-k}+\delta _{4,j+k}),\\&A_{i,j}=\frac{1}{2}(\zeta _{1,i-j}+\zeta _{1,j-i}+\zeta _{1,j+i})\\&\quad +\frac{1}{2i}\lambda (\delta _{4,i-j}-\delta _{4,j-i}+\delta _{4,j+i}),\\&A_{M+i,j}=\frac{1}{2}(\eta _{1,i-j}-\eta _{1,j-i}+\eta _{1,j+i})\\&\quad -\frac{1}{2i}\lambda (\gamma _{4,i-j}+\gamma _{4,j-i}+\gamma _{4,j+i}),\\&A_{2M+1,j}=-\frac{1}{2}\lambda \sum \limits _{k=1}^M\\&\quad \frac{[1-(-1)^{k}]}{k}(\delta _{4,k-j}-\delta _{4,j-k}+\delta _{4,j+k}),\\&A_{2M+2,j}=\frac{1}{2}(\gamma _{4,-j}+\gamma _{4,j}),\\&B_{0,j}=\frac{1}{2}(\eta _{1,-j}+\eta _{1,j})-\frac{1}{2}\lambda \sum \limits _{k=1}^M\\&\quad \frac{1}{k}(\gamma _{4,k-j}+\gamma _{4,j-k}-\gamma _{4,j+k}),\\&B_{i,j}=\frac{1}{2}(\eta _{1,j-i}+\eta _{1,j+i}-\eta _{1,i-j})\\&\quad +\frac{1}{2i}\lambda (r_{4,i-j}+r_{4,j-i}-r_{4,j+i}),\\&B_{M+i,j}=\frac{1}{2}(\zeta _{1,i-j}+\zeta _{1,j-i}-\zeta _{1,j+i})\\&\quad -\frac{1}{2i}\lambda (\delta _{4,j-i}+\delta _{4,j+i}-\delta _{4,i-j}),\\&B_{2M+1,j}=-\frac{1}{2}\lambda \sum \limits _{k=1}^M \frac{[1-(-1)^{k}]}{k}(\gamma _{4,k-j}\\&\quad +\gamma _{4,j-k}-\gamma _{4,j+k}),\\&B_{2M+2,j}=\frac{1}{2}(\delta _{4,j}-\delta _{4,-j}),\\&R_{0}=-\zeta _{2,0}+\lambda \sum \limits _{k=1}^M \frac{1}{k}\delta _{1,k},\\&R_{i}=-\zeta _{2,i}-\lambda \frac{1}{i}\delta _{1,i},\\&R_{M+i}=-\eta _{2,i}+\lambda \frac{1}{i}\gamma _{1,i},\\&R_{2M+1}=-\sum \limits _{k=1}^M (-1)^{k}\zeta _{2,k}\\&\quad +\lambda \sum \limits _{k=1}^M \frac{[1-(-1)^{k}]}{k}\delta _{1,k},\\&R_{2M+2}=-\gamma _{1,0}, \end{aligned}$$

where

$$\begin{aligned} i=1,2,\ldots ,M, \ \ \ j=0,1,2,\ldots ,M, \end{aligned}$$

for \(k<0\), \(\zeta _{1,k}=\eta _{1,k}=r_{4,k}=\delta _{4,k}=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, Z., Li, Z. et al. Perturbation incremental method of limit cycle for a nonlinear conveyor belt system. Nonlinear Dyn 104, 3533–3545 (2021). https://doi.org/10.1007/s11071-021-06573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06573-2

Keywords

Navigation