Skip to main content
Log in

Static and dynamic behaviors of belt-drive dynamic systems with a one-way clutch

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the nontrivial equilibrium and the steady-state periodic response of belt-drive system with a one-way clutch and belt flexural rigidity. A nonlinear piecewise discrete–continuous dynamic model is established by modeling the motions of the translating belt spans as transverse vibrations of axially moving viscoelastic beams. The rotations of the pulleys and the accessory are also considered. Furthermore, the transverse vibrations and the rotation motions are coupled by nonlinear dynamic tension. The nontrivial equilibriums of the belt-drive system are obtained by an iterative scheme via the differential and integral quadrature methods (DQM and IQM). Moreover, the periodic fluctuation of the driving pulley is modeled as the excitation of the belt-drive system. The steady-state periodic responses of the dynamic system are, respectively, studied via the high-order Galerkin truncation as well as the DQM and IQM. The time histories of the system are numerically calculated based on the 4th Runge–Kutta time discretization method. Furthermore, the frequency–response curves are presented from the numerical solutions. Based on the steady-state periodic response, the resonance areas of the dynamic system are obtained by using the frequency sweep. Moreover, the influences of the truncation terms of the Galerkin method, such as 6-term, 8-term, 10-term, 12-term, and 16-term, are investigated by comparing with the DQM and IQM. Numerical results demonstrate that the one-way clutch reduces the resonance responses of the belt-drive system via the torque-transmitting directional function. Furthermore, the comparisons in numerical examples show that the investigation on steady-state responses of the belt-drive system with a one-way clutch and belt flexural rigidity needs 16-term truncation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pellicano, F., Fregolent, A., Bertuzzi, A., Vestroni, F.: Primary and parametric non-linear resonances of a power transmission belt: experimental and theoretical analysis. J. Sound Vib. 244, 669–684 (2001)

    Article  Google Scholar 

  2. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58, 91–116 (2005)

    Article  Google Scholar 

  3. Pietra, L.D., Timpon, F.: Tension in a flat belt transmission: experimental investigation. Mech. Mach. Theory 70, 129–156 (2013)

    Article  Google Scholar 

  4. Michon, G., Manin, L., Parker, R.G., Dufour, R.: Duffing oscillator with parametric excitation: analytical and experimental investigation on a belt-pulley system. J. Comput. Nonlinear Dyn. 3, 031001 (2008)

    Article  Google Scholar 

  5. Scurtu, P.R., Clark, M., Zu, J.: Coupled longitudinal and transverse vibration of automotive belts under longitudinal excitations using analog equation method. J. Vib. Control 18, 1336–1352 (2012)

    Article  Google Scholar 

  6. Peeken, H.J., Gold, P.W.: Coupling and clutches-state of the art. In: Proceedings of the International Conference on Gears, Dusseldorf Germany, pp. 47–60 (1996)

  7. Leamy, M.J., Wasfy, T.M.: Transient and steady-state dynamic finite element modeling of belt-drives. ASME J. Dyn. Syst. Meas. Control 124, 575–581 (2002)

    Article  Google Scholar 

  8. Vernay, P., Ferraris, G., Delbez, A., Ouplomb, P.: Transient behaviour of a sprag-type over-running clutch: an experimental study. J. Sound Vib. 248, 567–572 (2001)

    Article  Google Scholar 

  9. Lewicki, D.G., DeSmidt, H., Smith, E.C., Bauman, S.W.: Dynamics of a dual-clutch gearbox system: analysis and experimental validation. J. Am. Helicopter Soc. 58, 17–28 (2013)

    Article  Google Scholar 

  10. Ulsoy, A.G., Whitsell, J.E., Hooven, M.D.: Design of belt-tensioner systems for dynamic stability. ASME J. Vib. Acoust. Stress Reliab. Des. 107, 282–290 (1985)

    Article  Google Scholar 

  11. Shangguan, W.B., Feng, X., Lin, H., Yang, J.: A calculation method for natural frequencies and transverse vibration of a belt span in accessory drive systems. Proc. Inst. Mech. Eng. C 227, 2268–2279 (2013)

    Article  Google Scholar 

  12. Kong, L., Parker, R.G.: Equilibrium and belt-pulley vibration coupling in serpentine belt drives. ASME J. Appl. Mech. 70, 739–750 (2003)

    Article  MATH  Google Scholar 

  13. Kong, L., Parker, R.G.: Coupled belt-pulley vibration in serpentine drives with belt bending stiffness. ASME J. Appl. Mech. 71, 109–119 (2004)

    Article  MATH  Google Scholar 

  14. Beikmann, R.S., Perkins, N.C., Ulsoy, A.G.: Free vibration of serpentine belt drive systems. ASME J. Vib. Acoust. 118, 406–413 (1996)

    Article  Google Scholar 

  15. Beikmann, R.S., Perkins, N.C., Ulsoy, A.G.: Nonlinear coupled vibration response of serpentine belt drive systems. ASME J. Vib. Acoust. 118, 567–574 (1996)

    Article  Google Scholar 

  16. Moon, J., Wickert, J.A.: Non-linear vibration of power transmission belts. J. Sound Vib. 200, 419–431 (1997)

    Article  Google Scholar 

  17. Kim, S.K., Lee, J.M.: Analysis of the non-linear vibration characteristics of a belt-driven system. J. Sound Vib. 223, 723–740 (1999)

    Article  Google Scholar 

  18. Zhang, L., Zu, J.: One-to-one auto-parametric resonance in serpentine belt drive systems. J. Sound Vib. 232, 783–806 (2000)

    Article  Google Scholar 

  19. Li, X.J., Chen, L.Q.: Modal analysis of coupled vibration of belt drive systems. Appl. Math. Mech. Engl. Ed. 29, 9–13 (2008)

    Article  MATH  Google Scholar 

  20. Zhu, F., Parker, R.G.: Piece-wise linear dynamic analysis of serpentine belt drives with a one-way clutch. Proc. Inst. Mech. Eng. C 222, 1165 (2008)

    Article  Google Scholar 

  21. Dufva, K., Kerkkänen, K., Maqueda, L.G., Shabana, A.A.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48, 449–466 (2007)

    Article  MATH  Google Scholar 

  22. Mockensturm, E.M., Guo, J.P.: Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. ASME J. Appl. Mech. 72, 374–380 (2005)

    Article  MATH  Google Scholar 

  23. Ding, H., Chen, L.Q.: Stability of axially accelerating viscoelastic beams multi-scale analysis with numerical confirmations. Eur. J. Mech. A Solids 27, 1108–1120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, T., wen Lo, G.G.: A mathematical model of an over-running sprag clutch. Mech. Mach. Theory 29, 11–23 (1994)

    Article  Google Scholar 

  25. Toshihiro, Y., Taisuke, T., Yuki, S., Shuzo, O.: Development of combined-type continuous variable transmission with quadric crank chains and one-way clutches. In: 2012 Proceedings of SICE Annual Conference (SICE), pp. 2151–2156 (2012)

  26. Zhu, F., Parker, R.G.: Non -linear dynamics of a one-way clutch in belt-pulley systems. J. Sound Vib. 279, 285–308 (2005)

    Article  Google Scholar 

  27. Zhu, F., Parker, R.G.: Perturbation analysis of a clearance-type nonlinear system. J. Sound Vib. 292, 969–979 (2006)

    Article  Google Scholar 

  28. Mockensturm, E.M., Balaji, R.: Piece-wise linear dynamic systems with one-way clutches. ASME J. Vib. Acoust. 127, 475–482 (2005)

    Article  Google Scholar 

  29. Cheon, G.J.: Nonlinear behavior analysis of spur gear pairs with a one-way clutch. J. Sound Vib. 304, 18–30 (2007)

    Article  Google Scholar 

  30. Ding, H., Zu, J.: Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model. J. Sound Vib. 332, 6472–6487 (2013)

    Article  Google Scholar 

  31. Zhang, L., Zu, J.: Modal analysis of serpentine belt drive systems. J. Sound Vib. 222, 259–279 (1999)

    Article  Google Scholar 

  32. Ding, H., Zhang, G.C., Chen, L.Q., Yang, S.P.: Forced vibrations of supercritically transporting viscoelastic beams. ASME J. Vib. Acoust. 134, 051007 (2012)

    Article  Google Scholar 

  33. Guo, S.Q., Yang, S.P.: Transverse vibrations of arbitrary non-uniform beams. Appl. Math. Mech. Engl. Ed. 35, 607–620 (2014)

    Article  MathSciNet  Google Scholar 

  34. Li, F.M., Liu, C.C.: Parametric vibration stability and active control of nonlinear beams. Appl. Math. Mech. Engl. Ed 33(11), 1381–1392 (2012)

    Article  Google Scholar 

  35. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49, 1–27 (1996)

    Article  Google Scholar 

  36. Daneshjou, K., Talebitooti, M., Talebitooti, R.: Free vibration and critical speed of moderately thick rotating laminated composite conical shell using generalized differential quadrature method. Appl. Math. Mech. Engl. Ed. 34, 437–456 (2013)

  37. Leamy, M.J.: On a perturbation method for the analysis of unsteady belt-drive operation. ASME J. Appl. Mech. 72, 570–580 (2005)

    Article  MATH  Google Scholar 

  38. Čepon, G., Boltezar, M.: Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description. J. Sound Vib. 319, 1019–1035 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the State Key Program of National Natural Science Foundation of China (No. 11232009), the National Natural Science Foundation of China (No. 11372171), and Innovation Program of Shanghai Municipal Education Commission (No. 12YZ028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Li, DP. Static and dynamic behaviors of belt-drive dynamic systems with a one-way clutch. Nonlinear Dyn 78, 1553–1575 (2014). https://doi.org/10.1007/s11071-014-1534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1534-7

Keywords

Navigation