Skip to main content
Log in

Extended state observer-based adaptive prescribed performance control for a class of nonlinear systems with full-state constraints and uncertainties

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an extended state observer-based adaptive prescribed performance control technique is proposed for a class of nonlinear systems with full-state constraints and uncertainties. An extraordinary feature is that not only the control problem of prescribed performance tracking and full-state constraints are solved simultaneously, but also the parametric uncertainties and disturbances are considered, which will make it difficult to design a stable controller. For this purpose, the extended state observer and adaptive technique are integrated to obtain estimations of disturbances and parameters. Then, based on the combination of prescribed performance and barrier Lyapunov function, a novel backstepping control scheme is developed with feedforward compensation of parameters and disturbances to ensure that the tracking error is kept within a specified prescribed performance bound without violation of full states at all times. Moreover, the boundedness of all signals in the closed-loop system is proved and asymptotic tracking can be realized if the disturbances are time-invariant. Finally, two simulation examples are performed to highlight the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Krstic, M.: On using least-squares updates without regressor filtering in identification and adaptive control of nonlinear systems. Automatica 45(3), 731–735 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yao, B., Tomizukai, M.: Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica 33(5), 893–903 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wen, C.Y., Zhou, J., Liu, Z.T.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5), 759–769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, B.S., Lee, C.H., Chang, Y.C.: H-infinity tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)

    Article  Google Scholar 

  6. Guo, B.Z., Wu, Z.H., Zhou, H.C.: Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans. Autom. Control 61(6), 1613–1618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deshpande, V.S., Phadke, S.B.: Control of uncertain nonlinear systems using an uncertainty and disturbance estimator. Trans. ASME J. Dyn. Syst., Meas., Control 134(2), 024501 (2012)

    Article  Google Scholar 

  8. Chen, M., Wu, Q.X., Cui, R.X.: Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans. 52(2), 198–206 (2013)

    Article  Google Scholar 

  9. Chen, M., Wu, Q.X., Jiang, C.S.: Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dyn. 70(4), 2421–2432 (2012)

    Article  MathSciNet  Google Scholar 

  10. Liu, Y.L., Wang, H., Guo, L.: Composite robust H∞ control for uncertain stochastic nonlinear systems with state delay via a disturbance observer. IEEE Trans. Autom. Control 63(12), 4345–4352 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ji, D.H., Jeong, S.C., Park, J.H., Won, S.C.: Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer. Nonlinear Dyn. 69(3), 1125–1136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rabiee, H., Ataei, M., Ekramian, M.: Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica 109, 108515 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yao, J.Y., Deng, W.X.: Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application. Nonlinear Dyn. 89(3), 1611–1624 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, M., Shao, S.Y., Jiang, B.: Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Trans. Cybern. 47(10), 3110–3123 (2017)

    Article  Google Scholar 

  15. Chen, M., Ge, S.S.: Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans. Ind. Electron. 62(12), 7706–7716 (2015)

    Article  MathSciNet  Google Scholar 

  16. Pan, H.H., Sun, W.C., Gao, H.J., Jing, X.J.: Disturbance observer-based adaptive tracking control with actuator saturation and its application. IEEE Trans. Autom. Sci. Eng. 13(2), 868–875 (2016)

    Article  Google Scholar 

  17. Wang, C.L., Lin, Y.: Adaptive dynamic surface control for MIMO nonlinear time-varying systems with prescribed tracking performance. Int. J. Control 88(4), 832–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Y.Y., Hu, J.B., Li, J., Liu, B.Q.: Improved prescribed performance control for nonaffine pure-feedback systems with input saturation. Int. J. Robust Nonlinear Control 29, 1769–1788 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, S.B., Na, J., Ren, X.M.: RISE-based asymptotic prescribed performance tracking control of nonlinear servo mechanisms. IEEE Trans. Syst., Man, Cybern., Syst. 48(12), 2359–2370 (2018)

    Article  Google Scholar 

  21. Na, J., Chen, Q., Ren, X.M., Guo, Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61(1), 486–494 (2014)

    Article  Google Scholar 

  22. Wang, S.B., Ren, X.M., Na, J., Zeng, T.Y.: Extended-state-observer-based funnel control for nonlinear servomechanisms with prescribed tracking performance. IEEE Trans. Autom. Sci. Eng. 14(1), 98–108 (2017)

    Article  Google Scholar 

  23. Zhu, Y.K., Qiao, J.Z., Guo, L.: Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing. IEEE Trans. Ind. Electron. 66(3), 1973–1983 (2019)

    Article  Google Scholar 

  24. Chen, L.S., Wang, Q.: Prescribed performance-barrier Lyapunov function for the adaptive control of unknown pure-feedback systems with full-state constraints. Nonlinear Dyn. 95, 2443–2459 (2019)

    Article  MATH  Google Scholar 

  25. Sun, T.R., Pan, Y.P.: Robust adaptive control for prescribed performance tracking of constrained uncertain nonlinear systems. J. Frank. Inst. 356, 18–30 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, S.I., Lee, J.M.: Improved prescribed performance constraint control for a strict feedback non-linear dynamic system. IET Control Theory Appl. 7(14), 1818–1827 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zhao, K., Song, Y.D., Ma, T.D., He, L.: Prescribed performance control of uncertain Euler–Lagrange systems subject to full-state constraints. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3478–3489 (2018)

    Article  MathSciNet  Google Scholar 

  28. Zhang, J.J., Sun, Q.M.: Prescribed performance adaptive neural output feedback dynamic surface control for a class of strict-feedback uncertain nonlinear systems with full state constraints and unmodeled dynamics. Int. J. Robust Nonlinear Control 30(2), 459–483 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cheng, J., Park, J.H., Zhao, X.D., Karimi, H.R., Cao, J.D.: Quantized nonstationary filtering of network-based Markov switching RSNSs: a multiple hierarchical structure strategy. IEEE Trans. Autom 65(11), 4816–4823 (2020)

    Article  MATH  Google Scholar 

  30. Cheng, J., Huang W. T., Park, J. H., Cao J. D.: A hierarchical structure approach to finite-time filter design for fuzzy Markov switching systems with deception attacks. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2021.3049476

  31. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron 56(3), 900–906 (2009)

    Article  Google Scholar 

  32. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, Z.L., Guo, B.Z.: A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Trans. Autom. Control 63(1), 211–218 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guo, B.Z., Wu, Z.H.: Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control. Syst. Control Lett. 100, 21–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen, S., Chen, Z.X.: On active disturbance rejection control for a class of uncertain systems with measurement uncertainty. IEEE Trans. Ind. Electron 68(2), 1475–1485 (2021)

    Article  Google Scholar 

  36. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kostarigka, A.K., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica 49, 1137–1147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cheng, J., Park, J.H., Cao, J.D., Qi, W.H.: A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization. Nonlinear Dyn. 100(1), 509–521 (2020)

    Article  MATH  Google Scholar 

  39. Wang, C.C., Yang, G.H.: Observer-based adaptive prescribed performance tracking control for nonlinear systems with unknown control direction and input saturation. Neurocomputing 284, 17–26 (2018)

    Article  Google Scholar 

  40. Zong, Q., Zhao, Z.S., Zhang, J.: Higher order sliding mode control with self-tuning law based on integral sliding mode. IET Control Theory Appl. 4(7), 1282–1289 (2010)

    Article  MathSciNet  Google Scholar 

  41. Zuo, Z.Y.: Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl. 9(4), 545–552 (2015)

    Article  MathSciNet  Google Scholar 

  42. Ye, D., Cai, Y., Yang, H., Zhao, X.: Adaptive neural-based control for non-strict feedback systems with full-state constraints and unmodeled dynamics. Nonlinear Dyn. 97, 715–732 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2019-048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangbao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of Theorem 1. If the disturbances di, i = 1,..., n, are time-invariant, the following positive definite Lyapunov function is defined with xei = di in this case

$$ V_{a} = V_{n} + \sum_{i = 1}^{n} {\frac{1}{2}\varepsilon_{i}^{T} P\varepsilon_{i} } + \frac{1}{2}\tilde{\theta }^{T} \Gamma^{ - 1} \tilde{\theta } $$
(41)

Differentiating Vn, substituting (5) into it yields

$$ \begin{aligned} \dot{V}_{a} & = \dot{V}_{n} + \sum_{i = 1}^{n} {\left( {\frac{1}{2}\dot{\varepsilon }_{i}^{T} P\varepsilon_{i} + \frac{1}{2}\varepsilon_{i}^{T} P\dot{\varepsilon }_{i} } \right)} - \tilde{\theta }^{T} \Gamma^{ - 1} \dot{\hat{\theta }} \\ &= \dot{V}_{n} - \tilde{\theta }^{T} \Gamma^{ - 1} \dot{\hat{\theta }} + \sum_{i = 1}^{n} {\left( {\frac{1}{2}\left( {\omega_{i} A\varepsilon_{i} + B_{1} \tilde{\theta }^{T} \varphi_{i} } \right)^{T} P\varepsilon_{i} + \frac{1}{2}\varepsilon_{i}^{T} P\left( {\omega_{i} A\varepsilon_{i} + B_{1} \tilde{\theta }^{T} \varphi_{i} } \right)} \right)} \\ &= \dot{V}_{n} - \tilde{\theta }^{T} \Gamma^{ - 1} \dot{\hat{\theta }} + \sum_{i = 1}^{n} {\left( {\frac{1}{2}\omega_{i} \varepsilon_{i}^{T} A^{T} P\varepsilon_{i} + \frac{1}{2}\omega_{i} \varepsilon_{i}^{T} PA\varepsilon_{i} + \varepsilon_{i}^{T} PB_{1} \tilde{\theta }^{T} \varphi_{i} } \right)} \\ \end{aligned} $$
(42)

As the matrix A is Hurwitz,\(A^{T} P + PA = - 2I\) is established, noting (23)–(26), we have

$$ \begin{aligned} \dot{V}_{a}& \le - \sum_{j = 2}^{n} {\frac{{k_{j} z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \frac{{\rho^{ - 1} k_{1} z_{1}^{2} }}{{1 - z_{1}^{2} }} + \sum_{j = 2}^{n} {\frac{{z_{j} \tilde{\theta }^{T} \varphi_{j} \left( {\overline{x}_{j} } \right)}}{{L_{j}^{2} - z_{j}^{2} }}} { + }\sum_{k = 2}^{n} {\frac{{z_{k} \left( {d_{k} \left( {\overline{x}_{k} ,t} \right) - \hat{x}_{ek} } \right)}}{{L_{k}^{2} - z_{k}^{2} }}} \hfill \\ &\quad -\, \sum_{k = 2}^{n} {\frac{{z_{k} \dot{\alpha }_{{\left( {k - 1} \right)u}} }}{{L_{k}^{2} - z_{k}^{2} }}} - \sum_{k = 2}^{n} {\frac{{z_{k}^{2} \sum_{j = 1}^{k - 1} {\left( {\omega_{j} \frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}} \right)^{2} } }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} - \sum_{k = 2}^{n} {\frac{{\omega_{k}^{2} z_{k}^{2} }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} + \frac{{\rho^{ - 1} z_{1} }}{{1 - z_{1}^{2} }}\tilde{\theta }^{T} \varphi_{1} \left( {\overline{x}_{1} } \right) \hfill \\ &\quad +\, \frac{{\rho^{ - 1} z_{1} }}{{1 - z_{1}^{2} }}\left( {d_{1} \left( {x_{1} ,t} \right) - \hat{x}_{e1} } \right) - \frac{{\omega_{1}^{2} \rho^{ - 2} z_{1}^{2} }}{{2\left( {1 - z_{1}^{2} } \right)^{2} }} - \tilde{\theta }^{T} \Gamma^{ - 1} \dot{\hat{\theta }} - \sum_{i = 1}^{n} {\omega_{i} \left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{i = 1}^{n} {\varepsilon_{i}^{T} PB_{1} \tilde{\theta }^{T} \varphi_{i} } \hfill \\ & = - \sum_{j = 2}^{n} {\frac{{k_{j} z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \frac{{\rho^{ - 1} k_{1} z_{1}^{2} }}{{1 - z_{1}^{2} }} + \sum_{j = 2}^{n} {\frac{{z_{j} \tilde{\theta }^{T} \varphi_{j} \left( {\overline{x}_{j} } \right)}}{{L_{j}^{2} - z_{j}^{2} }}} + \frac{{\rho^{ - 1} z_{1} }}{{1 - z_{1}^{2} }}\tilde{\theta }^{T} \varphi_{1} \left( {\overline{x}_{1} } \right){ + }\sum_{k = 2}^{n} {\frac{{z_{k} \tilde{x}_{ek} \left( {\overline{x}_{k} ,t} \right)}}{{L_{k}^{2} - z_{k}^{2} }}} \hfill \\ &\quad -\, \sum_{k = 2}^{n} {\frac{{z_{k} \sum_{j = 1}^{k - 1} {\frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}\left( {\tilde{\theta }^{T} \varphi_{j} \left( {\overline{x}_{j} } \right) + \tilde{x}_{ej} \left( {\overline{x}_{j} ,t} \right)} \right)} }}{{L_{k}^{2} - z_{k}^{2} }}} - \sum_{k = 2}^{n} {\frac{{z_{k}^{2} \sum_{j = 1}^{k - 1} {\left( {\omega_{j} \frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}} \right)^{2} } }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} - \sum_{k = 2}^{n} {\frac{{\omega_{k}^{2} z_{k}^{2} }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} \hfill \\ &\quad +\, \frac{{\rho^{ - 1} z_{1} }}{{1 - z_{1}^{2} }}\tilde{x}_{e1} - \frac{{\omega_{1}^{2} \rho^{ - 2} z_{1}^{2} }}{{2\left( {1 - z_{1}^{2} } \right)^{2} }} - \tilde{\theta }^{T} \Gamma^{ - 1} \dot{\hat{\theta }} - \sum_{i = 1}^{n} {\omega_{i} \left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{i = 1}^{n} {\varepsilon_{i}^{T} PB_{1} \tilde{\theta }^{T} \varphi_{i} } \hfill \\ \end{aligned} $$
(43)

Utilizing the Young’s inequality, we obtain

$$ \begin{aligned} \sum_{k = 2}^{n} {\frac{{z_{k} \tilde{x}_{ek} }}{{L_{k}^{2} - z_{k}^{2} }}} &\le \sum_{k = 2}^{n} {\frac{{\omega_{k}^{2} z_{k}^{2} }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} + \sum_{k = 2}^{n} {\frac{{\varepsilon_{k2}^{2} }}{2}} \hfill \\ \sum_{k = 2}^{n} {\frac{{z_{k} \sum_{j = 1}^{k - 1} {\frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}\tilde{x}_{ej} \left( {\overline{x}_{j} ,t} \right)} }}{{L_{k}^{2} - z_{k}^{2} }}} &\le \sum_{k = 2}^{n} {\frac{{z_{k}^{2} \sum_{j = 1}^{k - 1} {\left( {\omega_{j} \frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}} \right)^{2} } }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} + \sum_{k = 2}^{n} {\sum_{j = 1}^{k - 1} {\frac{{\varepsilon_{j2}^{2} }}{2}} } \hfill \\ \frac{{\rho^{ - 1} }}{{1 - z_{1}^{2} }}z_{1} \tilde{x}_{e1}& \le \frac{{\omega_{1}^{2} \rho^{ - 2} z_{1}^{2} }}{{2\left( {1 - z_{1}^{2} } \right)^{2} }} + \frac{{\varepsilon_{12}^{2} }}{2} \hfill \\ \end{aligned} $$
(44)

Substituting (28) and (44) into (43), then we have

$$ \begin{aligned} \dot{V}_{a} &\le - \sum_{j = 2}^{n} {\frac{{k_{j} z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \frac{{\rho^{ - 1} k_{1} z_{1}^{2} }}{{1 - z_{1}^{2} }} - \sum_{i = 1}^{n} {\omega_{i} \left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{k = 2}^{n} {\sum_{j = 1}^{k - 1} {\frac{{\varepsilon_{j2}^{2} }}{2}} } + \sum_{k = 1}^{n} {\frac{{\varepsilon_{k2}^{2} }}{2}} \hfill \\ &\quad -\, \tilde{\theta }^{T} \left( {\Gamma^{ - 1} \dot{\hat{\theta }} - \sum_{j = 2}^{n} {\frac{{z_{j} \varphi_{j} \left( {\overline{x}_{j} } \right)}}{{L_{j}^{2} - z_{j}^{2} }}{ + }\sum_{k = 2}^{n} {\frac{{z_{k} \sum_{j = 1}^{k - 1} {\frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}} \varphi_{j} \left( {\overline{x}_{j} } \right)}}{{L_{k}^{2} - z_{k}^{2} }} - \sum_{i = 1}^{n} {\varepsilon_{i}^{T} PB_{1} \varphi_{i} - \frac{{\rho^{ - 1} z_{1} }}{{1 - z_{1}^{2} }}\varphi_{1} \left( {\overline{x}_{1} } \right)} } } } \right) \hfill \\ &\le - \sum_{j = 2}^{n} {\frac{{k_{j} z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \frac{{\rho^{ - 1} k_{1} z_{1}^{2} }}{{1 - z_{1}^{2} }} - \sum_{i = 1}^{n} {\frac{{2\omega_{i} - n}}{2}\left\| {\varepsilon_{i} } \right\|^{2} } \hfill \\ &= - W \hfill \\ \end{aligned} $$
(45)

According to Lyapunov’s theorem, Va is uniformly ultimately bounded; thus, errors zi, \(\tilde{\theta }\), and \(\tilde{\varepsilon }\) are bounded. This further guarantees the boundedness of e1. Moreover, the adaptive parameters \(\hat{\theta }\) and \(\hat{x}_{ei}\) are all bounded. As x1 = e(t) + x1d(t), \(z_{1} = e\left( t \right)/\rho \left( t \right)\), \(\left| {z_{1} } \right| \le 1\) with Assumption 2 and (8), we have \(\left| {x_{1} } \right| \le c_{1}\), and x1 is bounded. α1 in (12) is a function of x1, z1,\(\hat{\theta }\),\(\dot{x}_{1d}\) and \(\hat{x}_{e1}\). Since the boundedness of x1, z1, \(\hat{\theta }\), \(\dot{x}_{1d}\) and \(\hat{x}_{e1}\), α1 is bounded. As \(\left| {x_{2} } \right| \le \left| {\alpha_{1} } \right|_{\max } + \left| {z_{2} } \right|\) and \(\left| {z_{2} } \right| \le L_{2}\), we obtain \(x_{2} \le c_{2}\) and α2 is bounded. Similarly,\(\left| {x_{i + 1} } \right|\), αi, i = 3, …, n-1 and the control input u are bounded. Consequently, all signals in the closed-loop system are bounded, prescribed performance tracking is obtained and full states are ensured to remain in the constrained field.

Appendix 2

Proof of Theorem 2. If the disturbances di, i = 1,..., n, are time-variant, xei = \(d_{i} \left( {\overline{x}_{i} ,t} \right) + \tilde{\theta }^{T} \varphi_{i} \left( {\overline{x}_{i} } \right)\). With (6), differentiating Vb defined in (29), we have

$$ \dot{V}_{b} = \dot{V}_{n} + \sum_{i = 1}^{n} {\left( {\frac{1}{2}\omega_{i} \varepsilon_{i}^{T} A^{T} P\varepsilon_{i} + \frac{1}{2}\omega_{i} \varepsilon_{i}^{T} PA\varepsilon_{i} + \varepsilon_{i}^{T} PB_{2} \frac{{h_{i} \left( t \right)}}{{w_{i} }}} \right)} $$
(46)

As \(A^{T} P + PA = - 2I\), noting (23), (25) and (28), we have

$$ \begin{aligned} \dot{V}_{b} &\le \dot{V}_{n} - \sum_{i = 1}^{n} {\omega_{i} \left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{i = 1}^{n} {\varepsilon_{i}^{T} PB_{2} \frac{{h_{i} \left( t \right)}}{{\omega_{i} }}} \hfill \\ &\le - \sum_{j = 2}^{n} {\frac{{k_{j} z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \frac{{\rho^{ - 1} k_{1} z_{1}^{2} }}{{1 - z_{1}^{2} }}{ + }\sum_{k = 2}^{n} {\frac{{z_{k} \left( {d_{k} \left( {\overline{x}_{k} ,t} \right) + \tilde{\theta }^{T} \varphi_{k} \left( {\overline{x}_{k} } \right) - \hat{x}_{ek} } \right)}}{{L_{k}^{2} - z_{k}^{2} }}} \hfill \\ &\quad -\, \sum_{k = 2}^{n} {\frac{{z_{k} \sum_{j = 1}^{k - 1} {\frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}\left( {\tilde{x}_{ej} \left( {\overline{x}_{j} ,t} \right)} \right)} }}{{L_{k}^{2} - z_{k}^{2} }}} - \sum_{k = 2}^{n} {\frac{{z_{k}^{2} \sum_{j = 1}^{k - 1} {\left( {\omega_{j} \frac{{\partial \alpha_{k - 1} }}{{\partial x_{j} }}} \right)^{2} } }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} - \sum_{k = 2}^{n} {\frac{{\omega_{k}^{2} z_{k}^{2} }}{{2\left( {L_{k}^{2} - z_{k}^{2} } \right)^{2} }}} \hfill \\ &\quad+\, \frac{{\rho^{ - 1} z_{1} }}{{1 - z_{1}^{2} }}\left( {d_{1} \left( {x_{1} ,t} \right) + \tilde{\theta }^{T} \varphi_{1} \left( {\overline{x}_{1} } \right) - \hat{x}_{e1} } \right) - \frac{{\omega_{1}^{2} \rho^{ - 2} z_{1}^{2} }}{{2\left( {1 - z_{1}^{2} } \right)^{2} }} - \sum_{i = 1}^{n} {\omega_{i} \left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{i = 1}^{n} {\varepsilon_{i}^{T} PB_{2} \frac{{h_{i} \left( t \right)}}{{\omega_{i} }}} \hfill \\ &\le - \sum_{j = 2}^{n} {\frac{{k_{j} z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \frac{{\rho^{ - 1} k_{1} z_{1}^{2} }}{{1 - z_{1}^{2} }} - \sum_{i = 1}^{n} {\omega_{i} \left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{j = 2}^{n} {\sum_{k = 1}^{j - 1} {\frac{{\varepsilon_{k2}^{2} }}{2}} } + \frac{1}{2}\sum_{i = 1}^{n} {\left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{i = 1}^{n} {\frac{{\left\| {\varepsilon_{i} } \right\|^{2} }}{2}} + \sum_{i = 1}^{n} {\frac{{\left\| {PB_{2} } \right\|^{2} \left| {h_{i} \left( t \right)} \right|^{2} }}{{2\omega_{i}^{2} }}} \hfill \\ &\le - \sum_{j = 2}^{n} {\frac{{k_{j} z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \frac{{\rho^{ - 1} k_{1} z_{1}^{2} }}{{1 - z_{1}^{2} }} - \sum_{i = 1}^{n} {\frac{{2\omega_{i} - n - 1}}{2}\left\| {\varepsilon_{i} } \right\|^{2} } + \sum_{i = 1}^{n} {\frac{{\left\| {PB_{2} } \right\|^{2} \left| {h_{i} \left( t \right)} \right|^{2} }}{{2\omega_{i}^{2} }}} \hfill \\ \end{aligned} $$
(47)

As \(\log \frac{{L_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }} \le \frac{{z_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}\) in the interval zj < Lj [42], then

$$ \begin{gathered} \dot{V}_{b} \le - \sum_{j = 2}^{n} {k_{j} \log \frac{{L_{j}^{2} }}{{L_{j}^{2} - z_{j}^{2} }}} - \rho^{ - 1} k_{1} \log \frac{1}{{1 - z_{1}^{2} }} - \sum_{i = 1}^{n} {\frac{{2\omega_{i} - n - 1}}{{2\lambda_{\max } \left( P \right)}}\varepsilon_{i}^{T} P\varepsilon_{i} } + \sigma \hfill \\ \le - \lambda V_{a} + \sigma \hfill \\ \end{gathered} $$
(48)

which leads to (30). Similar to the proof of Theorem 1, all signals in the closed-loop system are also bounded and prescribed performance tracking is obtained without violation of constraints of the full states.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Xie, N., Shen, H. et al. Extended state observer-based adaptive prescribed performance control for a class of nonlinear systems with full-state constraints and uncertainties. Nonlinear Dyn 105, 345–358 (2021). https://doi.org/10.1007/s11071-021-06564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06564-3

Keywords

Navigation