Skip to main content
Log in

Global invariant manifolds delineating transition and escape dynamics in dissipative systems: an application to snap-through buckling

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Invariant manifolds play an important role in organizing global dynamical behaviors. For example, it is found that in multi-well conservative systems where the potential energy wells are connected by index-1 saddles, the motion between potential wells is governed by the invariant manifolds of a periodic orbit around the saddle. In two-degree-of-freedom systems, such invariant manifolds appear as cylindrical conduits which are referred to as transition tubes. In this study, we apply the concept of invariant manifolds to study the transition between potential wells in not only conservative systems, but more realistic dissipative systems, by solving respective proper boundary value problems. The example system considered is a two-mode model of the snap-through buckling of a shallow arch. We define the transition region, \(\mathcal {T}_h\), as a set of initial conditions of a given initial Hamiltonian energy h with which the trajectories can escape from one potential well to another, which in the example system corresponds to snap-through buckling of a structure. The numerical results reveal that in the conservative system, the boundary of the transition region, \(\partial \mathcal {T}_h\), is a cylinder, while in the dissipative system, \(\partial \mathcal {T}_h\) is an ellipsoid. The algorithms developed in the current research from the perspective of invariant manifold provide a robust theoretical–computational framework to study escape and transition dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhong, J., Virgin, L.N., Ross, S.D.: A tube dynamics perspective governing stability transitions: an example based on snap-through buckling. Int. J. Mech. Sci. 149, 413–428 (2018)

    Article  Google Scholar 

  2. Collins, P., Ezra, G.S., Wiggins, S.: Isomerization dynamics of a buckled nanobeam. Phys. Rev. E 86(5), 056218 (2012)

    Article  Google Scholar 

  3. Zhong, J.: Geometrical Investigation on Escape Dynamics in the Presence of Dissipative and Gyroscopic Forces. Ph.D. thesis, Virginia Tech (2020)

  4. Napoli, G., Turzi, S.: Snap buckling of a confined thin elastic sheet. Proc. R. Soc. A: Math. Phys. Eng. Sci. 471(2183), 20150444 (2015)

    Article  Google Scholar 

  5. Guan, Y., Virgin, L.N., Helm, D.: Structural behavior of shallow geodesic lattice domes. Int. J. Solids Struct. 155, 225–239 (2018)

    Article  Google Scholar 

  6. Ozorio de Almeida, A.M., De Leon, N., Mehta, M.A., Marston, C.C.: Geometry and dynamics of stable and unstable cylinders in Hamiltonian systems. Physica D 46, 265–285 (1990)

  7. De Leon, N., Mehta, M.A., Topper, R.Q.: Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory. J. Chem. Phys. 94, 8310–8328 (1991)

    Article  MathSciNet  Google Scholar 

  8. Wiggins, S., Wiesenfeld, L., Jaffé, C., Uzer, T.: Impenetrable barriers in phase-space. Phys. Rev. Lett. 86(24), 5478 (2001)

    Article  Google Scholar 

  9. Uzer, T., Jaffé, C., Palacián, J., Yanguas, P., Wiggins, S.: The geometry of reaction dynamics. Nonlinearity 15(4), 957 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabern, F., Koon, W.S., Marsden, J.E., Ross, S.D.: Theory and computation of non-RRKM lifetime distributions and rates in chemical systems with three or more degrees of freedom. Physica D 211(3–4), 391–406 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jaffé, C., Ross, S.D., Lo, M.W., Marsden, J., Farrelly, D., Uzer, T.: Statistical theory of asteroid escape rates. Phys. Rev. Lett. 89(1), 011101 (2002)

    Article  Google Scholar 

  12. Koon, W.S., Marsden, J.E., Ross, S.D., Lo, M.W., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N. Y. Acad. Sci. 1017, 11–38 (2004)

    Article  Google Scholar 

  13. Onozaki, K., Yoshimura, H., Ross, S.D.: Tube dynamics and low energy Earth-Moon transfers in the 4-body system. Adv. Space Res. 60(10), 2117–2132 (2017)

    Article  Google Scholar 

  14. Sequeira, D., Wang, X.-S., Mann, B.: On the manifestation of coexisting nontrivial equilibria leading to potential well escapes in an inhomogeneous floating body. Physica D 365, 80–90 (2018)

    Article  MathSciNet  Google Scholar 

  15. Naik, S., Ross, S.D.: Geometry of escaping dynamics in nonlinear ship motion. Commun. Nonlinear Sci. Numer. Simul. 47, 48–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhong, J., Ross, S.D.: Geometry of escape and transition dynamics in the presence of dissipative and gyroscopic forces in two degree of freedom systems. Commun. Nonlinear Sci. Numer. Simul. 82, 105033 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meiss, J.D.: Differential dynamical systems, vol. 14. Siam (2007)

  18. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, New York (2003)

    MATH  Google Scholar 

  19. Perko, L.: Differential Equations and Dynamical Systems, vol. 7. Springer, New York (2013)

    MATH  Google Scholar 

  20. Moser, J.: On the generalization of a theorem of Liapunov. Commun. Pure Appl. Math. 11, 257–271 (1958)

    Article  MATH  Google Scholar 

  21. Moser, J.: Stable and Random Motions in Dynamical Systems with Special Emphasis on Celestial Mechanics. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  22. Krauskopf, B., Osinga, H. M., Doedel, E. J., Henderson, M. E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M. and Junge, O. [2006] A survey of methods for computing (un) stable manifolds of vector fields. In Modeling And Computations In Dynamical Systems: In Commemoration of the 100th Anniversary of the Birth of John von Neumann, 67–95. World Scientific

  23. Parker, T.S., Chua, L.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (2012)

    MATH  Google Scholar 

  24. Krauskopf, B., Osinga, H.M.: Computing geodesic level sets on global (un) stable manifolds of vector fields. SIAM J. Appl. Dyn. Syst. 2(4), 546–569 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Osinga, H.M.: Understanding the geometry of dynamics: the stable manifold of the Lorenz system. J. R. Soc. New Zealand 48(2–3), 203–214 (2018)

    Article  Google Scholar 

  26. Dellnitz, M., Hohmann, A.: A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75(3), 293–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dellnitz, M., Hohmann, A.: The computation of unstable manifolds using subdivision and continuation. In: Nonlinear dynamical systems and chaos, pp. 449–459. Springer (1996)

  28. Madrid, J.J., Mancho, A.M.: Distinguished trajectories in time dependent vector fields. Chaos: Interdiscip. J. Nonlinear Sci. 19(1), 013111 (2009)

    Article  MathSciNet  Google Scholar 

  29. Mendoza, C., Mancho, A.M.: Hidden geometry of ocean flows. Phys. Rev. Lett. 105(3), 038501 (2010)

    Article  Google Scholar 

  30. Naik, S., Wiggins, S.: Finding normally hyperbolic invariant manifolds in two and three degrees of freedom with Hénon-Heiles-type potential. Phys. Rev. E 100(2), 022204 (2019)

    Article  MathSciNet  Google Scholar 

  31. Mancho, A.M., Wiggins, S., Curbelo, J., Mendoza, C.: Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18(12), 3530–3557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dankowicz, H., Schilder, F.: Recipes for continuation, vol. 11. SIAM (2013)

  33. Zhong, J., Fu, Y., Chen, Y., Li, Y.: Analysis of nonlinear dynamic responses for functionally graded beams resting on tensionless elastic foundation under thermal shock. Compos. Struct. 142, 272–277 (2016)

    Article  Google Scholar 

  34. Chen, Y., Fu, Y., Zhong, J., Tao, C.: Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation. Compos. B Eng. 131, 253–259 (2017)

    Article  Google Scholar 

  35. Wiebe, R., Virgin, L.N.: On the experimental identification of unstable static equilibria. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 472(2190), 20160172 (2016)

    Google Scholar 

  36. Zhong, J., Ross, S.D.: Differential correction and arc-length continuation applied to boundary value problems: examples based on snap-through of circular arches. Appl. Math. Model. 97, 81–95 (2021)

    Article  MathSciNet  Google Scholar 

  37. Virgin, L., Guan, Y., Plaut, R.: On the geometric conditions for multiple stable equilibria in clamped arches. Int. J. Non-Linear Mech. 92, 8–14 (2017)

    Article  Google Scholar 

  38. Harvey Jr., P., Virgin, L.: Coexisting equilibria and stability of a shallow arch: Unilateral displacement-control experiments and theory. Int. J. Solids Struct. 54, 1–11 (2015)

    Article  Google Scholar 

  39. Murrell, J.N., Laidler, K.J.: Symmetries of activated complexes. Trans. Faraday Soc. 64, 371–377 (1968)

    Article  Google Scholar 

  40. De Leon, N., Ling, S.: Simplification of the transition state concept in reactive island theory: Application to the HCN\(\rightleftharpoons \)CNH isomerization. J. Chem. Phys. 101, 4790–4802 (1994)

    Article  Google Scholar 

  41. De la Vega, J.R.: Role of symmetry in the tunneling of the proton in double-minimum potentials. Acc. Chem. Res. 15(6), 185–191 (1982)

    Article  Google Scholar 

  42. Minyaev, R.M.: Reaction path as a gradient line on a potential energy surface. Int. J. Quantum Chem. 49(2), 105–127 (1994)

    Article  Google Scholar 

  43. Smedarchina, Z., Siebrand, W., Fernández-Ramos, A.: Correlated double-proton transfer. I. Theory. J. Chem. Phys. 127(17), 174513 (2007)

    Article  Google Scholar 

  44. Accardi, A., Barth, I., Kühn, O., Manz, J.: From synchronous to sequential double proton transfer: quantum dynamics simulations for the model Porphine. J. Phys. Chem. A 114(42), 11252–11262 (2010)

    Article  Google Scholar 

  45. Ezra, G.S., Wiggins, S.: Phase-space geometry and reaction dynamics near index 2 saddles. J. Phys. A: Math. Theor. 42(20), 205101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  47. Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer-Verlag, New York (1994)

    Book  MATH  Google Scholar 

  48. McGehee, R. [1969] Some homoclinic orbits for the restricted three-body problem. Ph.D. thesis, University of Wisconsin, Madison

  49. Conley, C.C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  50. Seydel, R. [2009] Practical bifurcation and stability analysis, vol. 5. Springer Science & Business Media

  51. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  52. Nayfeh, A.H., Balachandran, B.: Applied nonlinear dynamics: analytical, computational, and experimental methods. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  53. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Appl. Mech. 48(4), 959–964 (1981)

    Article  MATH  Google Scholar 

  54. Fu, Y., Zhong, J., Shao, X., Tao, C.: Analysis of nonlinear dynamic stability for carbon nanotube-reinforced composite plates resting on elastic foundations. Mech. Adv. Mater. Struct. 23(11), 1284–1289 (2016)

    Article  Google Scholar 

  55. Koon, W. S., Lo, M. W., Marsden, J. E. and Ross, S. D. [2011] Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, ISBN 978-0-615-24095-4

  56. Sundararajan, P., Noah, S.T.: Dynamics of forced nonlinear systems using shooting/arc-length continuation method-application to rotor systems. J. Vib. Acoust. 119(1), 9–20 (1997)

    Article  Google Scholar 

  57. Krauskopf, B., Osinga, H.M., Galán-Vioque, J.: Numerical continuation methods for dynamical systems. Springer, New York (2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mingwu Li for the discussion on COCO and Hinke M. Osinga for stimulating discussion during the nascent stage of this work. We also thank Harry Dankowicz and Jan Sieber for hosting “Advanced Summer School on Continuation Methods for Nonlinear Problems” at UIUC in 2018 from which the authors got to know COCO.

Funding

This work was supported in part by the National Science Foundation under awards 1537349 and 1821145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Quadratic equation for the transition ellipsoid

The form of the transition ellipsoid in (52) that mediates the transition in the dissipative system for the snap-through buckling of a shallow arch can be rewritten by the following form:

$$\begin{aligned} a_{\bar{p}_2} \left( \bar{p}_2^0 \right) ^2 + b_{\bar{p}_2} \bar{p}_2^0 + c_{\bar{p}_2}=0, \end{aligned}$$
(69)

where \(a_{\bar{p}_2}\), \(b_{\bar{p}_2}\), and \(c_{\bar{p}_2}\) are given by

$$\begin{aligned}&a_{\bar{p}_2}= \frac{s_2^2}{2 \omega _p(c_x + \omega _p^2)^2}, \\&b_{\bar{p}_2}=\frac{\lambda s_2^2 (1+k_p) (c_x - \lambda ^2) [\bar{q}_2^0 - \bar{q}_1^0 (c_x + \omega _p^2)]}{\omega _p (k_p - 1) (c_x + \omega _p^2)^2 (\lambda ^2 + \omega _p^2)},\\&c_{\bar{p}_2}= c_p - \frac{\lambda ^2 s_2^2 (1+k_p)^2 (c_x - c_y)[\bar{q}_2^0 - \bar{q}_1^0 (c_x + \omega _p^2)]^2}{2 \omega _p (k_p-1)^2 (c_x + \omega _p^2)^2(\lambda ^2 + \omega _p^2)},\\&c_p = \left( \sum \limits _{i=1}^{4} c_p^{(i)}\right) / \left[ 2 \omega _p \left( k_p-1 \right) ^2 \left( \lambda ^2 + \omega _p^2 \right) ^2 \right] - h,\\&c_p^{(1)}=2 k_p s_1^2 \lambda \omega _p \left[ \bar{q}_2- \bar{q}_1 \left( c_x + \omega _p^2 \right) \right] ^2, \\&c_p^{(2)}= 8 k_p s_2^2 \lambda ^2 \omega _p^2 \bar{q}_1 \left( c_x \bar{q}_1 - \bar{q}_2 \right) ,\\&c_p^{(3)}=s_2^2 \lambda ^2 \left( 1+k_p \right) ^2 \left[ \left( c_x \bar{q}_1- \bar{q}_2 \right) ^2+ \bar{q}_1^2\omega _p^4 \right] ,\\&c_p^{(4)}=s_2^2 \omega _p^2 \left( k_p -1 \right) ^2 \left[ \left( c_x \bar{q}_1 - \bar{q}_2) \right) ^2+ \bar{q}_1^2 \lambda ^4 \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Ross, S.D. Global invariant manifolds delineating transition and escape dynamics in dissipative systems: an application to snap-through buckling. Nonlinear Dyn 104, 3109–3137 (2021). https://doi.org/10.1007/s11071-021-06509-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06509-w

Keywords

Navigation