Skip to main content
Log in

Pathfollowing of high-dimensional hysteretic systems under periodic forcing

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamic response and bifurcations of high-dimensional systems endowed with hysteretic restoring forces in all degrees of freedom are investigated. Two types of hysteresis models are considered, namely the Bouc–Wen model and a differential version of the so-called exponential model of hysteresis. The numerical technique tailored for tackling high-dimensional hysteretic systems is based on an enhanced pathfollowing approach based on the Poincaré map. In particular, a five-dof mass-spring-damper-like system, with each rheological element described by the Bouc–Wen or the exponential model of hysteresis enriched by cubic and quintic nonlinear elastic terms, is investigated and a rich variety of nonlinear responses and bifurcations is found and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mayergoyz, I.D.: Mathematical Models of Hysteresis. Springer, New York (1991)

    Book  Google Scholar 

  2. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)

    Book  Google Scholar 

  3. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer, Berlin (1996)

    Book  Google Scholar 

  4. Caughey, T.K.: Sinusoidal excitation of a system with bilinear hysteresis. J. Appl. Mech. 27(4), 640–643 (1960)

    Article  MathSciNet  Google Scholar 

  5. Iwan, W.D.: The steady-state response of the double bilinear hysteretic oscillator. J. Appl. Mech. 32, 921–925 (1965)

    Article  MathSciNet  Google Scholar 

  6. Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech. 33(4), 893–900 (1966)

    Article  Google Scholar 

  7. Masri, S.F.: Forced vibration of the damped bilinear hysteretic oscillator. J. Acoust. Soc. Am. 57, 106–111 (1975)

    Article  Google Scholar 

  8. Capecchi, D., Vestroni, F.: Steady-state dynamic analysis of hysteretic systems. J. Eng. Mech. 111, 1515–1531 (1985)

    Article  Google Scholar 

  9. Capecchi, D., Vestroni, F.: Periodic response of a class of hysteretic oscillators. Int. J. Non-Linear Mech. 25, 309–317 (1990)

    Article  Google Scholar 

  10. Capecchi, D.: Periodic response and stability of hysteretic oscillators. Dyn. Stab. Syst. 6, 89–106 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Wong, C.W., Ni, Y.Q., Lau, S.L.: Steady-state oscillation of hysteretic differential model. I: Response analysis. ASCE J. Eng. Mech. 120, 2271–2298 (1994)

    Article  Google Scholar 

  12. Wong, C.W., Ni, Y.Q., Ko, J.M.: Steady-state oscillation of hysteretic differential model. II: Performance analysis. ASCE J. Eng. Mech. 120, 249–263 (1994)

    Google Scholar 

  13. Capecchi, D., Masiani, R.: Reduced phase space analysis for hysteretic oscillators of Masing type. Chaos Solitons Fractals 10, 1583–1600 (1996)

    Article  MathSciNet  Google Scholar 

  14. Preisach, F.: Über die magnetische Nachwirkung. Zeitschrift für Physik 94, 277–302 (1935)

    Article  Google Scholar 

  15. Ramberg, W., Osgood, W.R.: Description of stress–strain curves by three parameters. Technical Note No. 902, National Advisory Committee For Aeronautics, Washington DC (1943)

  16. Masing, G.: Eigenspannungen und verfestigung beim messing. In: Proceedings of the Second International Congress for Applied Mechanics, Zurich, Switzerland, pp. 332–335 (1926)

  17. Sauter, D., Hagedorn, P.: On the hysteresis of wire cables in Stockbridge dampers. Int. J. Non-Linear Mech. 37, 1261–1459 (2002)

    Article  Google Scholar 

  18. Bouc, R.: Forced vibrations of mechanical systems with hysteresis. Abstract in: Proceedings of the 4th International Conference on Nonlinear Oscillations, Prague, Czechoslovakia, p, 315 (1967)

  19. Bouc, R.: Modèle mathématique d’hystérésis: application aux systèmes à un degré de liberté. Acustica 24, 16–25 (1971)

    MATH  Google Scholar 

  20. Wen, Y.K.: Method for random vibration of hysteretic systems. ASCE J. Eng. Mech. 120, 2299–2325 (1976)

    Google Scholar 

  21. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model. Arch. Comput. Methods in Eng. 16, 161–188 (2009)

    Article  Google Scholar 

  22. Vestroni, F., Noori, M.: Hysteresis in mechanical systems—modeling and dynamic response. Int. J. Non-Linear Mech. 37, 1261–1459 (2002)

    Article  Google Scholar 

  23. Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis. Nonlinear Dyn. 32, 235–258 (2003)

    Article  Google Scholar 

  24. Lacarbonara, W., Bernardini, D., Vestroni, F.: Nonlinear thermomechanical oscillations of shape-memory devices. Int. J. Solids Struct. 41, 1209–1234 (2004)

    Article  Google Scholar 

  25. Estakhraji, S.I.Z., Allen, M.S., Shetty, D.: Numerical continuation of periodic orbits for harmonically forced nonlinear systems with Iwan joints. In: Kerschen G., Brake M.R., Renson L. (eds) Nonlinear Structures and Systems, Vol. 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Belrin, pp. 91–103 (2021)

  26. Carboni, B., Lacarbonara, W.: Nonlinear dynamic response of a new hysteretic rheological device: experiments and computations. Nonlinear Dyn. 83, 3–39 (2016)

    Article  Google Scholar 

  27. Carboni, B., Lacarbonara, W.: A nonlinear vibration absorber with pinched hysteresis: theory and experiments. J. Eng. Mech. 142, 04016023 (2016)

    Article  Google Scholar 

  28. Lacarbonara, W., Cetraro, M.: Flutter control of a lifting surface via visco-hysteretic vibration absorbers. Int. J. Aeronaut. Space Sci. 12(4), 331–345 (2011)

    Article  Google Scholar 

  29. Casalotti, A., Lacarbonara, W., Arena, A.: Mitigation of post-flutter oscillations in suspension bridges by hysteretic tuned mass dampers. Eng. Struct. 69, 62–71 (2014)

    Article  Google Scholar 

  30. Pei, J.S., Carboni, B., Lacarbonara, W.: Mem-models as building blocks for simulation and identification of hysteretic systems. Nonlinear Dyn. 100, 973–99 (2020)

    Article  Google Scholar 

  31. Quaranta, G., Lacarbonara, W., Masri, S.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99, 1709–1761 (2020)

    Article  Google Scholar 

  32. Taló, M., Lanzara, G., Krause, B., Janke, A., Lacarbonara, W.: Sliding Crystals on low-dimensional carbonaceous nanofillers as distributed nanopistons for highly damping materials. ACS Appl. Mater. Interfaces 11, 38147–38159 (2019)

    Article  Google Scholar 

  33. Formica, G., Lacarbonara, W.: Asymptotic dynamic modeling and response of hysteretic nanostructured beams. Nonlinear Dyn. 99, 227–248 (2020)

  34. Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. Nonlinear Dyn. 93(3), 1647–1669 (2018)

    Article  Google Scholar 

  35. Vaiana, N., Sessa, S., Marmo, F., Rosati, L.: Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method. Nonlinear Dyn. 98(4), 2879–2901 (2019)

    Article  Google Scholar 

  36. Vaiana, N., Sessa, S., Rosati, L.: A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mech. Syst. Signal Process. 146, 106984 (2021)

    Article  Google Scholar 

  37. Sessa, S., Vaiana, N., Paradiso, M., Rosati, L.: An inverse identification strategy for the mechanical parameters of a phenomenological hysteretic constitutive model. Mech. Syst. Signal Process. 139, 106622 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Some of the initial results of this paper were presented at the 24th Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2019), Rome, Italy, September 15–19, 2019. The work of WL and GF was partially supported by the PRIN Grant No. 2017L7X3CS-002—entitled 3D PRINTING: A BRIDGE TO THE FUTURE. Computational methods, innovative applications, experimental validations of new materials and technologies) which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Formica.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formica, G., Vaiana, N., Rosati, L. et al. Pathfollowing of high-dimensional hysteretic systems under periodic forcing. Nonlinear Dyn 103, 3515–3528 (2021). https://doi.org/10.1007/s11071-021-06374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06374-7

Keywords

Navigation