Skip to main content
Log in

An efficient Galerkin averaging-incremental harmonic balance method for nonlinear dynamic analysis of rigid multibody systems governed by differential–algebraic equations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An efficient Galerkin averaging-incremental harmonic balance (EGA-IHB) method is developed for steady-state nonlinear dynamic analysis of index-3 differential algebraic equations (DAEs) for general rigid multibody systems. The multibody dynamic modeling theory has made significant advances in generality and simplicity, and multibody systems are usually governed by DAEs. The bridge between the multibody dynamic modeling theory and nonlinear dynamic analysis theory is built for the first time in this work, and the EGA-IHB method can be used as a universal solver for obtaining steady-state periodic responses of DAEs for general multibody systems. Since the fast Fourier transform and EGA are used, the EGA-IHB method has excellent robustness. Since the Floquet theory cannot be directly used for stability analysis of periodic responses of DAEs, a new stability analysis procedure is developed, where perturbed, linearized DAEs are reduced to ordinary differential equations with use of independent generalized coordinates. A modified arc-length continuation method with a scaling strategy is proposed for calculating response curves and conducting parameter studies. Several examples are used to show the performance and capability of the current method. Periodic solutions of DAEs from the EGA-IHB method show excellent agreement with those from numerical integration methods. Amplitude–frequency and amplitude–parameter response curves are generated, and stability and period-doubling bifurcations are analyzed. The current method shows excellent computational efficiency and robustness in solving high-dimensional DAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Willy, New York (1991)

    MATH  Google Scholar 

  2. Li, H., Chen, Y., Hou, L., Zhang, Z.: Periodic response analysis of a misaligned rotor system by harmonic balance method with alternating frequency/time domain technique. Sci. China Technol. Sci. 59(11), 1717–1729 (2016)

    Article  Google Scholar 

  3. Bhattiprolu, U., Bajaj, A.K., Davies, P.: Periodic response predictions of beams on nonlinear and viscoelastic unilateral foundations using incremental harmonic balance method. Int. J. Solids Struct. 99, 28–39 (2016)

    Article  Google Scholar 

  4. Peyton Jones, J.C., Yaser, K.S.A., Stevenson, J.: Automatic computation and solution of generalized harmonic balance equations. Mech. Syst. Signal Process. 101, 309–319 (2018)

    Article  Google Scholar 

  5. Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008)

    Article  Google Scholar 

  6. Lau, S.L., Cheung, Y.K., Wu, S.Y.: Variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. J. Appl. Mech. 49(4), 849–853 (1982)

    Article  MATH  Google Scholar 

  7. Raghothama, A., Narayanan, S.: Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469–492 (1999)

    Article  Google Scholar 

  8. Huang, J.L., Zhu, W.D.: Nonlinear dynamics of a high-dimensional model of a rotating euler-bernoulli beam under the gravity load. J. Appl. Mech. 81(10), 101007 (2014)

    Article  Google Scholar 

  9. Chen, S.H., Cheung, Y.K., Xing, H.X.: Nonlinear vibration of plane structures by finite element and incremental harmonic balance method. Nonlinear Dyn. 26(1), 87–104 (2001)

    Article  MATH  Google Scholar 

  10. Du, Y., Wang, W., Wang, L., Huang, Y.: Nonlinear dynamics of heave motion of the sandglass-type floating body with piecewise-nonlinear, time-varying stiffness. Marine Struct. 60(6), 136–150 (2018)

    Article  Google Scholar 

  11. Zhou, S., Song, G., Li, Y., Huang, Z., Ren, Z.: Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. Nonlinear Dyn. 98(4), 110071 (2019)

    MATH  Google Scholar 

  12. Leung, A.Y.T., Chui, S.K.: Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method. J. Sound Vib. 181(4), 619–633 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, X.F., Zhu, W.D.: A modified incremental harmonic balance method based on the fast fourier transform and Broyden’s method. Nonlinear Dyn. 81(1–2), 981–989 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ju, R., Fan, W., Zhu, W.D.: An efficient Galerkin averaging-incremental harmonic balance method based on tensor contraction and fast Fourier transform. J. Vib. Acoust. 142(6), 061011 (2020)

    Article  Google Scholar 

  15. Ginsberg, J.: Engineering Dynamics. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  16. Roberson, R.E., Schwertassek, R., Huston, R.L.: Dynamics of Multibody Systems. Springer, New York (1989)

    MATH  Google Scholar 

  17. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  18. Arnold, M., Brüls, O.: Convergence of the generalized-α scheme for constrained mechanical systems. Multibody Syst.Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Steigerwald, M.F.: BDF Methods for DAEs in Multi-body Dynamics: Shortcomings and Improvements. Springer, Berlin (1990)

    MATH  Google Scholar 

  20. Bayoumy, A.H., Nada, A.A., Megahed, S.M.: A continuum based three-dimensional modeling of wind turbine blades. Nonlinear Dyn. 8(3), 031004 (2012)

    Article  Google Scholar 

  21. Han, S.L., Bauchau, O.A.: Spectral collocation methods for the periodic solution of flexible multibody dynamics. Nonlinear Dyn. 92(4), 1599–1618 (2018)

    Article  MATH  Google Scholar 

  22. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  23. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  Google Scholar 

  24. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and their Behaviour. Willy, New York (2011)

    Book  MATH  Google Scholar 

  25. Leung, A.Y.T.: Nonlinear natural vibration analysis of beams by selective coefficient increment. Comput. Mech. 5, 73–80 (1989)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the support from the National Natural Science Foundation of China through Grant Nos. 11772100 and 11802188 and Fundamental Research Funds for Central Universities through Grant No. YJ201827.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: EGA Procedure

To calculate coefficient vectors related to \({\mathbf{A}}_{i}^{{r_{1} }}\), \({\mathbf{A}}_{i}^{{r_{2} }}\), \({{\varvec{\upxi}}}_{M}^{ij}\), \({{\varvec{\upxi}}}_{\varepsilon }^{ij}\), \({{\varvec{\upxi}}}_{\kappa }^{ij}\), and \({{\varvec{\upxi}}}_{{\Phi_{q} }}^{ij}\) in Eqs. (21) and (25) using the FFT, the first step is to conduct time-domain sampling, which can be effectively done by a series of matrix operations. Define a time-series matrix

$$ {\mathbf{T}} = \left[ {\begin{array}{*{20}c} 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & {\cos \left( {1\Delta \tau } \right)} & \cdots & {\cos \left( {H\Delta \tau } \right)} & {\sin \left( {1\Delta \tau } \right)} & \cdots & {\sin \left( {H\Delta \tau } \right)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & {\cos \left( {N\Delta \tau } \right)} & \cdots & {\cos \left( {NH\Delta \tau } \right)} & {\sin \left( {N\Delta \tau } \right)} & \cdots & {\sin \left( {NH\Delta \tau } \right)} \\ \end{array} } \right] $$
(56)

where \(\Delta \tau = 2\pi /N\), in which N is the sampling rate. Note that N should be sufficiently large to avoid spectrum aliasing. Hence, \(\tilde{q}_{i}\) and \(\tilde{\lambda }_{i}\) in Eqs. (7) and (10) can be expanded in the time domain following

$$ \begin{gathered} {\hat{\mathbf{q}}}^{i} = {\mathbf{T}} \cdot {\mathbf{A}}_{i} ,\;\;i = 1,2, \cdots ,n \hfill \\ {\hat{\varvec{\uplambda }}}^{i} = {\mathbf{T}} \cdot {\mathbf{B}}_{i} ,\;\;i = 1,2, \cdots ,m \hfill \\ \end{gathered} $$
(57)

where \({\hat{\mathbf{q}}}^{i}\) and \({\hat{\varvec{\uplambda }}}^{i}\) are N-dimensional time-series vectors related to \(\tilde{q}_{i}\) and \(\tilde{\lambda }_{i}\), respectively. There are \({\hat{\mathbf{q}}}^{i\prime} = \frac{{d{\hat{\mathbf{q}}}^{i} }}{d\tau } = \frac{{d{\mathbf{\mathbf T}}}}{d\tau } \cdot {\mathbf{A}}^{i}\) and \({\hat{\mathbf{q}}}^{i\prime \prime} = \frac{{d^{2} {\hat{\mathbf{q}}}^{i} }}{{d\tau^{{2}} }} = \frac{{d^{{2}} {\mathbf{\mathbf T}}}}{{d\tau^{{2}} }} \cdot {\mathbf{A}}^{i}\) related to \(\tilde{q}_{i}^{\prime}\) and \(\tilde{q}_{i}^{\prime \prime }\), respectively. Substituting Eq. (57) into Eqs. (5) and (6), where \(\tilde{q}_{i}\) and \(\tilde{\varvec{\uplambda }}_{i}\) are replaced by \({\hat{\mathbf{q}}}^{i}\) and \(\;{\hat{\varvec{\lambda }}}^{i}\), respectively, and scalar multiplications are replaced by elementary dots, one has the following time-domain sampling vectors:

$$ \begin{gathered} {\varvec{\hat{\mathbf{\kappa }}}^{ij}} = \frac{{\partial f_{i} \left( {{\hat{\mathbf{q}}}^{1} ,{\hat{\mathbf{q}}}^{2} , \cdots ,{\hat{\mathbf{q}}}^{n} ,\omega {\hat{\mathbf{q}}}^{{1}{\prime}} , \cdots ,\omega {\hat{\mathbf{q}}}^{{n}{\prime} }} \right)}}{{\partial q_{j} }} - \sum\limits_{k = 1}^{m} {\frac{{\partial^2 \Phi_{k} }}{{\partial q_{i} q_{j} }}\left( {{\hat{\mathbf{q}}}^{1} ,{\hat{\mathbf{q}}}^{2} , \cdots ,{\hat{\mathbf{q}}}^{n} } \right){\varvec{\hat{\mathbf{\lambda }}}}^{k} } \hfill \\ {\varvec{\hat{\mathbf{\varepsilon }}}^{ij}} = {\frac{1}{\omega}}\frac{{\partial f_{i} \left( {{\hat{\mathbf{q}}}^{1} ,{\hat{\mathbf{q}}}^{2} , \cdots ,{\hat{\mathbf{q}}}^{n} , \omega{\hat{\mathbf{q}}}^{{1}{\prime}} , \cdots ,\omega {\hat{\mathbf{q}}}^{{n}{\prime}} } \right)}}{{\partial q_{j}^{\prime } }} \hfill \\ {\hat{\varvec{\Phi }}}_{q}^{ij} = \frac{{\partial \Phi_{i} }}{{\partial q_{j} }}\left( {{\hat{\mathbf{q}}}^{1} ,{\hat{\mathbf{q}}}^{2} , \cdots,{\hat{\mathbf{q}}}^{n} } \right) \hfill \\ \end{gathered} $$
(58)

and

$$ \begin{aligned} &{\hat{\mathbf{r}}}^{1i} = - \omega^{2} \sum\limits_{j = 1}^{n} {M_{ij} {\hat{\mathbf{q}}}^{j\prime \prime} } - \sum\limits_{j = 1}^{m} {\frac{{\partial \Phi_{i} \left( {{\hat{\mathbf{q}}}^{1} , {{\hat{\mathbf{q}}}}^{2}\cdots ,{\hat{\mathbf{q}}}^{n} } \right)}}{{\partial q_{j} }}{\hat{\varvec {\lambda }}}^{j} } \\& \quad{\text{ + f}}_{i} \left( {\omega {\hat{\mathbf{q}}}}^{1\prime } , {\omega {\hat{\mathbf{q}}}}^{2\prime }\cdots, {\omega {\hat{\mathbf{q}}}}^{n\prime }, {\hat{\mathbf{q}}}^{1}, {\hat{\mathbf{q}}}^{2}\cdots, {\hat{\mathbf{q}}}^{n}, \tau \right) \hfill \\& {\hat{\mathbf{r}}}^{2i} { = } - \Phi_{i} \left( {{\hat{\mathbf{q}}}^{1} , {\hat{\mathbf{q}}}^{2} \cdots ,{\hat{\mathbf{q}}}^{n} }, \tau \right) \hfill \\ \end{aligned} $$
(59)

The FFT can then be used to generate \({\mathbf{A}}_{i}^{{r_{1} }} ,{\mathbf{A}}_{i}^{{r_{2} }} ,{{\varvec{\upxi}}}_{M}^{ij} ,{{\varvec{\upxi}}}_{\varepsilon }^{ij} ,{{\varvec{\upxi}}}_{\kappa }^{ij} ,\) and \({{\varvec{\upxi}}}_{{\Phi_{q} }}^{ij}\). The procedure to generate \({\mathbf{A}}_{i}^{{r_{1} }}\) is shown as an example here. According to the discrete Fourier transform (DFT) theory, one has

$$ \begin{gathered} A_{i}^{r1} = {\text{Re}} \left( {\sum\limits_{q = 1}^{N} {\hat{r}_{q}^{1i} e^{{ - \iota p\tau_{q} }} } } \right)\hat{r}_{{}}^{1i} ,\;\;i = 0,1, \cdots H, \hfill \\ A_{i}^{r1} = - {\text{Im}} \left( {\sum\limits_{q = 1}^{N} {\hat{r}_{q}^{1i} e^{{ - \iota \left( {p - H} \right)\tau_{q} }} } } \right)\hat{r}_{{}}^{1i} ,\;\;i = H + 1,H + 2, \cdots 2H + 1 \hfill \\ \end{gathered} $$
(60)

where \(\iota = \sqrt { - 1}\). In practice, the FFT is used to efficiently calculate the DFT in Eq. (60). One can similarly calculate \({\mathbf{A}}_{i}^{{r_{2} }} ,{{\varvec{\upxi}}}_{M}^{ij} ,{{\varvec{\upxi}}}_{\varepsilon }^{ij} ,{{\varvec{\upxi}}}_{\kappa }^{ij}\), and \({{\varvec{\upxi}}}_{{\Phi_{q} }}^{ij}\).

Appendix B: Governing DAEs for Numerical Examples in Sect. 5

Governing DAEs for numerical examples in Sect. 5 are in the standard form in Eq. (1) with their system matrices and vectors given below. For the first numerical example, one has

$$ \begin{gathered} {\mathbf{M}} = {\text{diag}}\left( {\begin{array}{*{20}c} {m_{1} } & {m_{1} } & {m_{1} l^{2} /12} \\ \end{array} } \right)\; \hfill \\ {\mathbf{q}} = \left( {\begin{array}{*{20}c} {x_{1} } & {y_{1} } & {\varphi_{1} } \\ \end{array} } \right)^{T} \hfill \\ {\mathbf{f}} = \left( {\begin{array}{*{20}c} 0 & { - m_{1} g} & { - \varepsilon_{1} \dot{\varphi } + f\cos \omega t} \\ \end{array} } \right)^{T} \hfill \\ \end{gathered} $$
(61)
$$ {{\varvec{\Phi}}} = \left( {\begin{array}{*{20}c} {x_{1} } \\ {y_{1} } \\ \end{array} } \right) + \left[ {\begin{array}{*{20}c} {\cos \varphi_{1} } & { - \sin \varphi_{1} } \\ {\sin \varphi_{1} } & {\cos \varphi_{1} } \\ \end{array} } \right]\left( {\begin{array}{*{20}c} { - l/2} \\ 0 \\ \end{array} } \right) $$
(62)

The system matrix and vectors for the inverted rod pendulum in the second example are

$$ \begin{gathered} {\mathbf{M}} = {\text{diag}}\left( {\begin{array}{*{20}c} {m_{1} } & {m_{1} } & {m_{1} l^{2} /12} \\ \end{array} } \right)\; \hfill \\ {\mathbf{q}} = \left( {\begin{array}{*{20}c} {x_{1} } & {y_{1} } & {\varphi_{1} } \\ \end{array} } \right)^{T} \hfill \\ {\mathbf{f}} = \left( {\begin{array}{*{20}c} 0 & { - m_{1} g} & { - \varepsilon \dot{\varphi }_{1} + \kappa ({\frac{\pi}{2}}-{\varphi }_{1} })^3 \\ \end{array} } \right) \hfill \\ \end{gathered} $$
(63)
$$ {{\varvec{\Phi}}} = \left( {\begin{array}{*{20}c} {x_{1} } \\ {y_{1} } \\ \end{array} } \right) + \left[ {\begin{array}{*{20}c} {\cos \varphi_{1} } & { - \sin \varphi_{1} } \\ {\sin \varphi_{1} } & {\cos \varphi_{1} } \\ \end{array} } \right]\left( {\begin{array}{*{20}c} { - l/2} \\ 0 \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} 0 \\ {p\sin \omega t} \\ \end{array} } \right) $$
(64)

For the slider-rod pendulum in the third example, mass matrices related to the slider and rod are

$$ \begin{aligned} & {\mathbf{M}}_{1} = {\text{diag}}\left( {\begin{array}{*{20}c} {m_{1} } & {m_{1} } \\ \end{array} } \right) \hfill \\ & {\mathbf{M}}_{2} = {\text{diag}}\left( {\begin{array}{*{20}c} {m_{2} } & {m_{2} } & {m_{2} l^{2} /12} \\ \end{array} } \right) \hfill \\ \end{aligned} $$
(65)

respectively, constrained generalized coordinates related to the slider and rod are

$$ \begin{aligned} & {\mathbf{q}}_{1} = \left( {\begin{array}{*{20}c} {x_{1} } & {y_{1} } \\ \end{array} } \right)^{T} \hfill \\ & {\mathbf{q}}_{2} = \left( {\begin{array}{*{20}c} {x_{2} } & {y_{2} } & {\varphi_{2} } \\ \end{array} } \right)^{T} \hfill \\ \end{aligned} $$
(66)

respectively. Force vectors related to the slider and rod are

$$ \begin{aligned} & {\mathbf{f}}_{1} = \left( {\begin{array}{*{20}c} {f\cos \omega t - c_{1} \dot{x}_{1}^{{}} - k_{1} x_{1} } & { - m_{1} g} \\ \end{array} } \right)^{T} \hfill \\ & {\mathbf{f}}_{2} = \left( {\begin{array}{*{20}c} 0 & { - m_{2} g} & { - c_{2} \dot{\varphi }_{2} - k_{2} \left( {\varphi_{2} + \frac{\pi }{2}} \right)} \\ \end{array} } \right)^{T} \hfill \\ \end{aligned} $$
(67)

respectively. Constraint equations are

$$ \begin{gathered} \Phi_{1} = y_{1} \hfill \\ {{\varvec{\Phi}}}_{2} = \left( {\begin{array}{*{20}c} {x_{2} } \\ {y_{2} } \\ \end{array} } \right) + \left[ {\begin{array}{*{20}c} {\cos \varphi_{2} } & { - \sin \varphi_{2} } \\ {\sin \varphi_{2} } & {\cos \varphi_{2} } \\ \end{array} } \right]\left( {\begin{array}{*{20}c} { - l/2} \\ 0 \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {x_{1} } \\ {y_{1} } \\ \end{array} } \right) \hfill \\ \end{gathered} $$
(68)

By combining Eqs. (65)–(68), the system matrix and vectors are

$$ {\mathbf{M = }}\left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{1} } & {} \\ {} & {{\mathbf{M}}_{2} } \\ \end{array} } \right]{\mathbf{,}}\;\;{\mathbf{q = }}\left( {\begin{array}{*{20}c} {{\mathbf{q}}_{1} } \\ {{\mathbf{q}}_{2} } \\ \end{array} } \right){\mathbf{,}}\;\;{\mathbf{f = }}\left( {\begin{array}{*{20}c} {{\mathbf{f}}_{1} } \\ {{\mathbf{f}}_{2} } \\ \end{array} } \right){\mathbf{,}}\;\;{\mathbf{\Phi = }}\left( {\begin{array}{*{20}c} {\Phi_{1} } \\ {{{\varvec{\Phi}}}_{2} } \\ \end{array} } \right) $$
(69)

The procedure to generate the governing DAEs for the slider-chain pendulum in the fourth example is illustrated in detail here. Constrained generalized coordinates for the slider and rods are

$$ \begin{aligned} & {\mathbf{q}}_{1} = \left( {\begin{array}{*{20}c} {x_{1} } & {y_{1} } \\ \end{array} } \right)^{T} \hfill \\ & {\mathbf{q}}_{i} = \left( {\begin{array}{*{20}c} {x_{i} } & {y_{i} } & {\varphi_{i} } \\ \end{array} } \right)^{T} \hfill \\ \end{aligned} $$
(70)

where \(\;i = 2,3, \cdots ,41\). Kinetic energies of the slider and chain rods are

$$ \begin{aligned} & K_{1} = m_{1} \left( {\dot{x}_{1}^{2} + \dot{y}_{1}^{2} } \right)/2 \hfill \\ & K_{i} = m_{i} \left( {\dot{x}_{i}^{2} + \dot{y}_{i}^{2} } \right)/2 + m_{i} l^{2} \dot{\varphi }_{i}^{2} /24 \hfill \\ \end{aligned} $$
(71)

respectively, where \(i = 2,3, \cdots ,41\), and their potential energies are

$$ \begin{aligned} & V_{1} = m_{1} gy_{1} + \left( {\kappa_{1} x_{1}^{2} } \right)/2 \hfill \\ & V_{2} = m_{2} gy_{2} + \hat{\kappa }\left( { - \pi /2 - \varphi_{2} } \right)^{2} /2, \hfill \\ & V_{i} = m_{i} gy_{i} + \hat{\kappa }\left( {\varphi_{i - 1} - \varphi_{i} } \right)^{2} /2 \hfill \\ \end{aligned} $$
(72)

where \(i = 3,4, \cdots ,41\). Non-conservative generalized forces on the slider and rods are

$$ \begin{aligned} & Q_{1} = p\cos \omega t - \varepsilon_{1} \dot{x}_{1} \hfill \\ & Q_{2} = - \hat{\varepsilon }\left( {2\dot{\varphi }_{2} - \dot{\varphi }_{3} } \right) \hfill \\ & Q_{i} = - \hat{\varepsilon }\left( {\dot{\varphi }_{i - 1} - 2\dot{\varphi }_{i} + \dot{\varphi }_{i + 1} } \right) \hfill \\ & Q_{41} = - \hat{\varepsilon }\left( {\dot{\varphi }_{40} - \dot{\varphi }_{41} } \right) \hfill \\ \end{aligned} $$
(73)

respectively, where \(i = 3,4, \cdots ,40\). Substituting Eqs. (71), (72), and (73) into the first kind of Lagrange’s equations

$$ \begin{aligned} & \frac{d}{dt}\frac{{\partial \left( {\sum\limits_{i = 1}^{41} {K_{i} } } \right)}}{{\partial {\dot{\mathbf{q}}}}} - \frac{{\partial \left( {\sum\limits_{i = 1}^{41} {K_{i} } } \right)}}{{\partial {\mathbf{q}}}} + \frac{{\partial \left( {\sum\limits_{i = 1}^{41} {V_{i} } } \right)}}{{\partial {\mathbf{q}}}} + {{\varvec{\Phi}}}_{{\mathbf{q}}}^{T} {{\varvec{\uplambda}}} = {\mathbf{Q}} \\ & {{\varvec{\Phi}}} = {\mathbf{0}} \\ \end{aligned} $$
(74)

one has mass matrices for all the bodies:

$$ \begin{aligned} & {\mathbf{M}}_{1} = {\text{diag}}\left( {\begin{array}{*{20}c} {m_{1} } & {m_{1} } \\ \end{array} } \right) \hfill \\ & {\mathbf{M}}_{i} = {\text{diag}}\left( {\begin{array}{*{20}c} {m_{i} } & {m_{i} } & {m_{i} l^{2} /12} \\ \end{array} } \right) \hfill \\ \end{aligned} $$
(75)

where \({\mathbf{M}}_{1}\) is related to the slider and \({\mathbf{M}}_{i}\) is related to the ith chain rod; force vectors for all the bodies are

$$ \begin{gathered} {\mathbf{f}}_{1} = \left( {\begin{array}{*{20}c} { - \varepsilon_{1} \dot{x}_{1} - \kappa_{1} x_{1} + p\cos \omega t} & { - m_{1} g} \\ \end{array} } \right)^{T} \hfill \\ \hfill \\ \end{gathered} $$
(76)
$$ {\mathbf{f}}_{2} = \left( {\begin{array}{*{20}c} 0 & { - m_{2} g} & { - \hat{\varepsilon }\left( {2\dot{\varphi }_{2} - \dot{\varphi }_{3} } \right) - \hat{\kappa }\left( { - \frac{\pi }{2} - 2\varphi_{2} + \varphi_{3} } \right)} \\ \end{array} } \right)^{T} $$
(77)
$$ \begin{gathered} {\mathbf{f}}_{i} = \left( {\begin{array}{*{20}c} 0 & { - m_{i} g} & { - \hat{\varepsilon }\left( {\dot{\varphi }_{i - 1} - 2\dot{\varphi }_{i} + \dot{\varphi }_{i + 1} } \right) - \hat{\kappa }\left( {\varphi_{i - 1} - 2\varphi_{i} + \varphi_{i + 1} } \right)} \\ \end{array} } \right)^{T} \hfill \\ \hfill \\ \end{gathered} $$
(78)

where \(i = 2,_{{}} 3,_{{}} \cdots ,_{{}} 40\), and

$$ {\mathbf{f}}_{41} = \left( {\begin{array}{*{20}c} 0 & { - m_{2} g} & { - \hat{\varepsilon }} \\ \end{array} \left( {\dot{\varphi }_{41} - \dot{\varphi }_{40} } \right) - \hat{\kappa }\left( {\varphi_{41} - \varphi_{40} } \right)} \right)^{T} $$
(79)

The bodies are attached to each other using rotating joints; hence, constraint equations are

$$ \begin{aligned} \Phi_{1} & = y_{1} \\ {{\varvec{\Phi}}}_{i} & = \left[ {\begin{array}{*{20}c} {x_{i + 1} } \\ {y_{i + 1} } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\cos \varphi_{i + 1} } & { - \sin \varphi_{i + 1} } \\ {\sin \varphi_{i + 1} } & {\cos \varphi_{i + 1} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} { - l/2} \\ 0 \\ \end{array} } \right] \\ & \quad - \left[ {\begin{array}{*{20}c} {x_{i} } \\ {y_{i} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} {\cos \varphi_{i} } & { - \sin \varphi_{i} } \\ {\sin \varphi_{i} } & {\cos \varphi_{i} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {l/2} \\ 0 \\ \end{array} } \right] \\ \end{aligned} $$
(80)

By combining Eqs. (75)–(80), the system matrix and vectors are

$$ {\mathbf{M}} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}_{1} } & {\mathbf{0}} & {\mathbf{0}} \\ {\mathbf{0}} & \ddots & \vdots \\ {\mathbf{0}} & \cdots & {{\mathbf{M}}_{41} } \\ \end{array} } \right],\;\;{\mathbf{f}} = \left( {\begin{array}{*{20}c} {{\mathbf{f}}_{1}^{{}} } & {{\mathbf{f}}_{2}^{{}} } & \cdots & {{\mathbf{f}}_{{{41}}}^{{}} } \\ \end{array} } \right)^{T} $$
(81)
$$ {{\varvec{\Phi}}} = \left( {\begin{array}{*{20}c} {{{\varvec{\Phi}}}_{1}^{T} } & {{{\varvec{\Phi}}}_{2}^{T} } & \cdots & {{{\varvec{\Phi}}}_{40}^{T} } \\ \end{array} } \right)^{T} $$
(82)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, R., Fan, W. & Zhu, W.D. An efficient Galerkin averaging-incremental harmonic balance method for nonlinear dynamic analysis of rigid multibody systems governed by differential–algebraic equations. Nonlinear Dyn 105, 475–498 (2021). https://doi.org/10.1007/s11071-021-06367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06367-6

Keywords

Navigation