Skip to main content
Log in

Passive-based adaptive control with the full-order observer for induction motor without speed sensor

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The conventional linear control methods are difficult to meet the control requirements of high-performance speed regulation of asynchronous motor due to the nonlinear and multi-variable problems of induction motor. A passive-based control method of induction motor with the full-order state observer is proposed with the Euler–Lagrange equation of motion of the induction motor. Based on the relationship between passivity and stability of induction motor, the state feedback is used for torque and speed tracking. The full-order state observer is adopted with rotor current and rotor flux as state variables, and the adaptive speed controller is designed to realize the passive-based control. The experimental results show that the errors between the estimated value based on the proposed full-order observer and the actual value of rotor current, speed and flux are small; the speed with the proposed adaptive control can reach the expected value quickly. The proposed control method can effectively meet the high-performance requirements of induction motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao, J., Kanellakopoulos, I.: Active identification for discrete-time nonlinear control. i. output-feedback systems. IEEE Trans. Autom. Control 47(2), 210–224 (2002)

    Article  MathSciNet  Google Scholar 

  2. Zhao, J., Kanellakopoulos, I.: Active identification for discrete-time nonlinear control. ii. strict-feedback systems. IEEE Trans. Autom. Control 47(2), 225–240 (2002)

    Article  MathSciNet  Google Scholar 

  3. Sergey, D., Mironchenko, A.: Input-to-state stability of nonlinear impulsive systems. SIAM J. Control Optim. 51(3), 1962–1987 (2013)

    Article  MathSciNet  Google Scholar 

  4. Alanis, A.Y., Sanchez, E.N., Loukianov, A.G.: Real-time discrete backstepping neural control for induction motors. IEEE Trans. Control Syst. Technol. 19(2), 359–366 (2011)

    Article  Google Scholar 

  5. Duarte-Mermoud, M.A., Travieso-Torres, J.C., Pelissier, I.S., et al.: Induction motor control based on adaptive passivity. Asian J. Control 14(1), 67–84 (2012)

    Article  MathSciNet  Google Scholar 

  6. Wenping, C., Mecrow, B.C., Atkinson, G.J., et al.: Overview of electric motor technologies used for more electric aircraft (mea). IEEE Trans. Ind. Electron. 59(9), 3523–3531 (2012)

    Article  Google Scholar 

  7. Wang, H., Ge, X., Liu, Y.: Second-order sliding-mode mras observer-based sensorless vector control of linear induction motor drives for medium-low speed maglev applications. IEEE Trans. Ind. Electron. 65(12), 9938–9952 (2018)

    Article  Google Scholar 

  8. Krim, S., Gdaim, S., Mtibaa, A., et al.: Fpga-based real-time implementation of a direct torque control with second-order sliding mode control and input–output feedback linearisation for an induction motor drive. IET Electr. Power Appl. 14(3), 480–491 (2020)

    Article  Google Scholar 

  9. Batlle, C., Dòria-Cerezo, A., Espinosa-Pérez, G., et al.: Simultaneous interconnection and damping assignment passivity-based control: the induction machine case study. Int. J. Control 82(2), 241–255 (2009)

    Article  MathSciNet  Google Scholar 

  10. Seleme, S.I., Rosa, A.H.R., Morais, L.M.F., et al.: Evaluation of adaptive passivity-based controller for power factor correction using a boost converter. IET Control Theory Appl. 6(14), 2168–2178 (2012)

    Article  MathSciNet  Google Scholar 

  11. Son, Y.I., Kim, I.H.: Complementary pid controller to passivity-based nonlinear control of boost converters with inductor resistance. IEEE Trans. Control Syst. Technol. 20(3), 826–834 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ortega, R., Loria, A., Nicklasson, J., et al.: Passivity-based control of Euler-Lagrange systems. Adapt. Disturb. Attenuation Frict. Compens. 26(3), 75–92 (1998)

    Google Scholar 

  13. Mahmoud, M.S., Zribi, M.: Passive control synthesis for uncertain systems with multiple-state delays. Comput. Electr. Eng. 28(3), 195–216 (2002)

    Article  Google Scholar 

  14. Ye, J., Malysz, P., Emadi, A.: A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 381–394 (2015)

    Article  Google Scholar 

  15. Wang, J.H., Huang, L.P., Yang, X.Y.: Power control of three-phase boost-type pwm rectifier based on passivity. Proc. CSEE 28(21), 20–25 (2008)

    Google Scholar 

  16. Holmes, D.G., McGrath, B.P., Parker, S.G.: Current regulation strategies for vector-controlled, induction motor drives. IEEE Trans. Ind. Electron. 59(10), 3680–3689 (2012)

    Article  Google Scholar 

  17. Yazdanpanah, R., Soltani, J., Markadeh, G.R.A.: Nonlinear torque and stator flux controller for induction motor drive based on adaptive input-output feedback linearization and sliding mode control. Energy Convers. Manag. 49(4), 541–550 (2008)

    Article  Google Scholar 

  18. Barambones, O., Alkorta, P., Maria, G.D.D.J.: A real-time estimation and control scheme for induction motors based on sliding mode theory. J. Frankl. Inst. 351(8), 4251–4270 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lloyd, S., Slotine, J.E.: Information theoretic tools for stable adaptation and learning. Int. J. Adapt. Control Signal Process. 10(4–5), 499–530 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Jiang, S.D., Liu, J.: Passivity-based control of doubly fed induction generator under grid voltage dip. Syst. Eng. Theory Pract. 34(2), 478–484 (2014)

    Google Scholar 

  21. Wu, W.J., Xue, H.: Passivity-based control strategies of doubly fed induction wind power generator without speed sensors. Appl. Mech. Mater. 380–384, 3124–3128 (2013)

    Article  Google Scholar 

  22. Xue, H., Jiang, J.: Adaptive passivity-based control of induction motors without speed sensors. Dyn. Contin. Discrete Impul. Syst. 13(1), 1953–1960 (2016)

    MathSciNet  Google Scholar 

  23. Xingjian, W., Shaoping, W., Pan, Z.: Adaptive fuzzy torque control of passive torque servo systems based on small gain theorem and input-to-state stability. Chin. J. Aeronaut. 25(6), 906–916 (2012)

    Article  Google Scholar 

  24. Yanhong, L., Yanxing, L., Hanjuan, H., et al.: Passivity control of induction motors based on adaptive observer design. IFAC Proc. Vol. 46(20), 176–181 (2013)

    Article  Google Scholar 

  25. Taoutaou, D., Castrolinares, R.: A controller-observer scheme for induction motors based on passivity feedback equivalence and sliding modes. Int. J. Adapt. Control Signal Process. 14(2–3), 355–376 (2015)

    Google Scholar 

  26. Ortega, R., Espinosa-Pérez, G., Astolfi, A.: Passivity-based control of ac drives: theory for the user and application examples. Int. J. Control 86(4), 625–635 (2013)

    Article  MathSciNet  Google Scholar 

  27. Zhang, Y., Yang, H.: predictive control for speed sensorless induction motor drive. Proc. CSEE 34(15), 2422–2429 (2014)

    Google Scholar 

  28. Bo, F., Zhumu, F., Leipo, L., et al.: The full order state observer speed-sensorless vector control based on parameters identification for induction motor. Meas. Control 52(3–4), 202–211 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China (U1704157), National Key Research and Development Program of China (2017YFB0306400), Scientific and Technological Innovation Leaders in Central Plains (194200510012), Science and Technology Innovative Teams in University of Henan Province (18IRTSTHN011) and CSC Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhumu Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Fu, Z. & Sun, L. Passive-based adaptive control with the full-order observer for induction motor without speed sensor. Nonlinear Dyn 104, 483–495 (2021). https://doi.org/10.1007/s11071-021-06290-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06290-w

Keywords

Navigation